Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/5/10.1063/1.4921671
1.
1. J. H. Kaplan, Annu. Rev. Biochem. 71, 511 (2002).
http://dx.doi.org/10.1146/annurev.biochem.71.102201.141218
2.
2. A. A. M. Holtslag and C. H. Moeng, J. Atmos. Sci. 48, 1690 (1991).
http://dx.doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2
3.
3. P. Urban, D. Schmoranzer, P. Hanzelka, K. R. Sreenivasan, and L. Skrbek, Proc. Natl. Acad. Sci. U.S.A. 110, 8036 (2013).
http://dx.doi.org/10.1073/pnas.1303996110
4.
4. C. G. Falthammar, J. Geophys. Res. 70, 2503, doi:10.1029/JZ070i011p02503 (1965).
http://dx.doi.org/10.1029/JZ070i011p02503
5.
5. T. J. Birmingh, J. Geophys. Res. 74, 2169, doi:10.1029/JA074i009p02169 (1969).
http://dx.doi.org/10.1029/JA074i009p02169
6.
6. J. G. Lyon, Science 288, 1987 (2000).
http://dx.doi.org/10.1126/science.288.5473.1987
7.
7. A. C. Boxer, R. Bergmann, J. L. Ellsworth, D. T. Garnier, J. Kesner, M. E. Mauel, and P. Woskov, Nat. Phys. 6, 207 (2010).
http://dx.doi.org/10.1038/nphys1510
8.
8. M. Schulz and L. J. Lanzerotti, Particle Diffusion in the Radiation Belts ( Springer-Verlag, 1974).
9.
9. T. A. Farley, A. D. Tomassian, and M. Walt, Phys. Rev. Lett. 25, 47 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.47
10.
10. F. Wagner and U. Stroth, Plasma Phys. Controlled Fusion 35, 1321 (1993).
http://dx.doi.org/10.1088/0741-3335/35/10/002
11.
11. X. Garbet, L. Garzotti, P. Mantica, H. Nordman, M. Valovic, H. Weisen, and C. Angioni, Phys. Rev. Lett. 91, 035001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.035001
12.
12. G. T. Hoang, C. Bourdelle, X. Garbet, J. F. Artaud, V. Basiuk, J. Bucalossi, F. Clairet, C. Fenzi-Bonizec, C. Gil, J. L. Segui et al., Phys. Rev. Lett. 93, 135003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135003
13.
13. C. Bourdelle, Plasma Phys. Controlled Fusion 47, A317 (2005).
http://dx.doi.org/10.1088/0741-3335/47/5A/023
14.
14. J. Weiland, A. Eriksson, H. Nordman, and A. Zagorodny, Plasma Phys. Controlled Fusion 49, A45 (2007).
http://dx.doi.org/10.1088/0741-3335/49/5A/S04
15.
15. D. R. Baker, “ A perturbation solution to the drift kinetic equation yields pinch type fluxes from the circulating electrons,” presented at the Transport Task Force Workshop, Madison, 2003.
16.
16. S. H. Muller, J. A. Boedo, K. H. Burrell, J. S. deGrassie, R. A. Moyer, D. L. Rudakov, W. M. Solomon, and G. R. Tynan, Phys. Plasmas 18, 072504 (2011).
http://dx.doi.org/10.1063/1.3605041
17.
17. J. Boedo, D. Gray, R. Conn, S. Jachmich, G. Van Oost, and R. R. Weynants, Czech. J. Phys. 48, 99 (1988).
18.
18. M. G. Shats and D. L. Rudakov, Phys. Rev. Lett. 79, 2690 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2690
19.
19. U. Stroth, T. Geist, J. P. T. Koponen, H. J. Hartfuss, P. Zeiler, and ECRH and W7-AS Team, Phys. Rev. Lett. 82, 928 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.928
20.
20. T. A. Carter and J. E. Maggs, Phys Plasmas 16, 012304 (2009).
http://dx.doi.org/10.1063/1.3059410
21.
21. S. C. Thakur, C. Brandt, L. Cui, J. J. Gosselin, A. D. Light, and G. R. Tynan, Plasma Sources Sci. Technol. 23, 044006 (2014).
http://dx.doi.org/10.1088/0963-0252/23/4/044006
22.
22. M. J. Burin, G. R. Tynan, G. Y. Antar, N. A. Crocker, and C. Holland, Phys. Plasmas 12, 052320 (2005).
http://dx.doi.org/10.1063/1.1889443
23.
23. C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, N. Taheri, and G. R. Tynan, Phys. Rev. Lett. 96, 195002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.195002
24.
24. Z. Yan, M. Xu, P. H. Diamond, C. Holland, S. H. Muller, G. R. Tynan, and J. H. Yu, Phys. Rev. Lett. 104, 065002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.065002
25.
25. M. Xu, G. R. Tynan, P. H. Diamond, C. Holland, J. H. Yu, and Z. Yan, Phys. Rev. Lett. 107, 055003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.055003
26.
26. M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller, and J. H. Yu, Phys. Plasmas 17, 032311 (2010).
http://dx.doi.org/10.1063/1.3325397
27.
27. G. R. Tynan, C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, and N. Taheri, Plasma Phys. Controlled Fusion 48, S51 (2006).
http://dx.doi.org/10.1088/0741-3335/48/4/S05
28.
28. C. Holland, G. R. Tynan, J. H. Y. A. James, D. Nishijima, M. Shimada, and N. Taheri, Plasma Phys. Controlled Fusion 49, A109 (2007).
http://dx.doi.org/10.1088/0741-3335/49/5A/S09
29.
29. Z. Yan, G. R. Tynan, C. Holland, M. Xu, S. H. Muller, and J. H. Yu, Phys. Plasmas 17, 012302 (2010).
http://dx.doi.org/10.1063/1.3276521
30.
30. Z. Yan, G. R. Tynan, C. Holland, M. Xu, S. H. Muller, and J. H. Yu, Phys. Plasmas 17, 032302 (2010).
http://dx.doi.org/10.1063/1.3322823
31.
31. A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59, 1581 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1581
32.
32. A. D. Light, S. C. Thakur, C. Brandt, Y. Sechrest, G. R. Tynan, and T. Munsat, Phys. Plasmas 20, 082120 (2013).
http://dx.doi.org/10.1063/1.4818148
33.
33. Z. Yan, J. H. Yu, C. Holland, M. Xu, S. H. Muller, and G. R. Tynan, Phys. Plasmas 15, 092309 (2008).
http://dx.doi.org/10.1063/1.2985836
34.
34. M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller, and J. H. Yu, Phys Plasmas 16, 042312 (2009).
http://dx.doi.org/10.1063/1.3098538
35.
35. P. H. Diamond, S. I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).
http://dx.doi.org/10.1088/0741-3335/47/5/R01
36.
36. J. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. R. Tynan, M. Schaffer, P. Stangeby, P. West et al., Phys. Plasmas 8, 4826 (2001).
http://dx.doi.org/10.1063/1.1406940
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4921671 for frequency-resolved particle flux profiles for B = 1300 G.[Supplementary Material]
38.
38. B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85, 5336 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5336
39.
39. T. Chiueh, P. W. Terry, P. H. Diamond, and J. E. Sedlak, Phys. Fluids 29, 231 (1986).
http://dx.doi.org/10.1063/1.865979
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/5/10.1063/1.4921671
Loading
/content/aip/journal/pop/22/5/10.1063/1.4921671
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/5/10.1063/1.4921671
2015-05-20
2016-09-30

Abstract

We report a turbulent particle flux in a cylindrical plasma when collisional drift waves generate a sufficiently strong sheared azimuthal flow that drives positive (negative) density fluctuations up (down) the background density gradient, resulting in a steepening of the mean density gradient. The results show the existence of a saturation mechanism for drift-turbulence driven sheared flows that can cause up-gradient particle transport and density profile steepening.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/5/1.4921671.html;jsessionid=rcMnceUA_fluNBs0utgEvMsf.x-aip-live-02?itemId=/content/aip/journal/pop/22/5/10.1063/1.4921671&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/5/10.1063/1.4921671&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/5/10.1063/1.4921671'
Right1,Right2,Right3,