Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Marsch, “ Kinetic physics of the solar corona and solar wind,” Living Rev. Sol. Phys. 3, 1 (2006).
2. S. P. Gary and J. Wang, “ Whistler instability: Electron anisotropy upper bound,” J. Geophys. Res. 101, 1074910754, doi:10.1029/96JA00323 (1996).
3. S. Stverak, P. Travnicek, M. Maksimovic, E. Marsch, A. N. Fazakerley, and E. E. Scime, “ Electron temperature anisotropy constraints in the solar wind,” J. Geophys. Res. 113, A03103, doi:10.1029/2007JA012733 (2008).
4. S. P. Gary and I. H. Cairns, “ Electron temperature anisotropy instabilities: Whistler, electrostatic and z mode,” J. Geophys. Res. 104(A9), 1983519842, doi:10.1029/1999JA900296 (1999).
5. S. P. Gary, K. Liu, and D. Winske, “ Whistler anisotropy instability at low electron β: Particle-in-cell simulations,” Phys. Plasmas 18, 082902 (2011).
6. R. A. Helliwell, Whistlers and Related Ionospheric Phenomena ( Stanford University Press, Stanford, CA, 1965).
7. C. Lacombe, O. Alexandrova, L. Matteini, O. Santolik, N. Cornilleau-Wehrlin, A. Mangeney, Y. de Conchy, and M. Maksimovic, “ Whistler mode waves and the electron heat flux in the solar wind: CLUSTER observations,” Astrophys. J. 796, 5 (2014).
8. C. Cattell, J. R. Wygant, K. Goetz, K. Kersten, P. J. Kellogg, T. von Rosenvinge, S. D. Bale, I. Roth, M. Temerin, M. K. Hudson, R. A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, and C. T. Russell, “ Discovery of very large amplitude whistler-mode waves in Earths radiation belts,” Geophys. Res. Lett. 35, L01105, doi:10.1029/2007GL032009 (2008).
9. A. Breneman, C. Cattell, J. Wygant, K. Kersten, L. B. Wilson III, S. Schreiner, P. J. Kellogg, and K. Goetz, “ Large-amplitude transmitter-associated and lightning-associated whistler waves in the Earths inner plasmasphere at L < 2,” J. Geophys. Res. 116, A06310, doi:10.1029/2010JA016288 (2011).
10. J. M. Urrutia, R. L. Stenzel, and K. D. Strohmaier, “ Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities,” Phys. Plasmas 15, 062109 (2008).
11. S. P. Gary, Theory of Space Plasma Microinstabilities ( University Press, Cambridge, 1993).
12. R. L. Mace, “ Whistler instability enhanced by suprathermal electrons within the Earth's foreshock,” J. Geophys. Res. 103(A7), 1464314654, doi:10.1029/98JA00616 (1998).
13. R. L. Mace and R. D. Sydora, “ Parallel whistler instability in a plasma with an anisotropic bi-Kappa distribution,” J. Geophys. Res. 115, A07206, doi:10.1029/2009JA015064 (2010).
14. M. Lazar, S. Poedts, and R. Schlickeiser, “ Instability of the parallel electromagnetic modes in Kappa distributed plasmas—I. Electron whistler-cyclotron modes,” Mon. Not. R. Astron. Soc. 410, 663670 (2011).
15. M. Lazar, S. Poedts, and M. J. Michno, “ Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas,” Astron. Astrophys. 554, A64 (2013).
16. M. Lazar, S. Poedts, and R. Schlickeiser, “ The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability,” J. Geophys. Res.: Space Phys. 119, 93959406 (2014).
17. M. Lazar, S. Poedts, R. Schlickeiser, and C. Dumitrache, “ Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas. Electromagnetic electron-cyclotron instability in the solar wind,” MNRAS 446, 30223033 (2015).
18. S. P. Gary, R. S. Hughes, J. Wang, and O. Chang, “ Whistler anisotropy instability: Spectral transfer in a three-dimensional particle-in-cell simulation,” J. Geophys. Res.: Space Phys. 119, 14291434 (2014).
19. A. A. Galeev and R. Z. Sagdeev, Nonlinear Plasma Theory ( Benjamin, New York, 1966).
20. V. I. Karpman, “ Nonlinear effects in the ELF waves propagating along the magnetic field in the magnetosphere,” Space Sci. Rev. 16, 361388 (1974).
21. P. H. Yoon, J. J. Seough, K. H. Kim, and D. H. Lee, “ Empirical versus exact numerical quasilinear analysis of electromagnetic instabilities driven by temperature anisotropy,” J. Plasma Phys. 78, 4754 (2012).
22. R. C. Davidson, D. A. Hammer, I. Haber, and C. E. Wagner, “ Nonlinear development of electromagnetic instabilities in anisotropic plasmas,” Phys. Fluids 15, 317333 (1972).
23. R. C. Davidson and D. A. Hammer, “ Nonequilibrium energy constants associated with large-amplitude electron whistlers,” Phys. Fluids 15, 12821284 (1972).
24. S. L. Ossakow, I. Haber, and E. Ott, “ Simulation of whistler instabilities in anisotropic plasmas,” Phys. Fluids 15, 15381540 (1972).
25. S. L. Ossakow, E. Ott, and I. Haber, “ Nonlinear evolution of whistler instabilities,” Phys. Fluids 15, 23142326 (1972).
26. Q. Lu, L. Zhou, and S. Wang, “ Particle-in-cell simulations of whistler waves excited by an electron κ distribution in space plasma,” J. Geophys. Res. 115, A02213, doi:10.1029/2009JA014580 (2010).
27. C. F. Kennel and H. E. Petschek, “ Limit on stably trapped particle fluxes,” J. Geophys. Res. 71, 128, doi:10.1029/JZ071i001p00001 (1966).
28. D. Summers and R. M. Thorne, “ The modified plasma dispersion function,” Phys. Fluids B 3, 18351847 (1991).
29. H. Stix, Waves in Plasmas ( Springer-Verlag, New York, 1992).
30. B. D. Fried and S. D. Conte, The Plasma Dispersion Function/The Hilbert transform of the Gaussian ( Academic Press, New York, 1961).
31. B. Eliasson, “ Outflow boundary conditions for the Fourier transformed three-dimensional Vlasov-Maxwell system,” J. Comput. Phys. 225, 15081532 (2007).
32. B. Eliasson, “ Numerical simulations of the Fourier transformed Vlasov-Maxwell system in higher dimensions—Theory and applications,” Transp. Theory Stat. Phys. 39(5&7), 387465 (2010).
33.The modified Bessel function of the second kind for non-negative argument and non-negative order is calculated numerically using the Fortran 77 routine RKBESL, see
34. R. A. Treumann and W. Baumjohann, Advanced Space Plasma Physics ( Imperial College Press, London, 1997).
35. M. J. Aschwanden, Physics of the Solar Corona ( Springer, New York, 2004).

Data & Media loading...


Article metrics loading...



This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd