Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/6/10.1063/1.4923307
1.
1. P. H. Diamond, A. Hasegawa, and K. Mima, Plasma Phys. Controlled Fusion 53, 124001 (2011).
http://dx.doi.org/10.1088/0741-3335/53/12/124001
2.
2. G. R. Tynan, A. Fujisawa, and G. McKee, Plasma Phys. Controlled Fusion 51, 113001 (2009).
http://dx.doi.org/10.1088/0741-3335/51/11/113001
3.
3. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).
http://dx.doi.org/10.1088/0741-3335/47/5/R01
4.
4. J. M. Dewhurst, B. Hnat, N. Ohno, R. O. Dendy, S. Masuzaki, T. Morisaki, and A. Komori, Plasma Phys. Controlled Fusion 50, 095013 (2008).
http://dx.doi.org/10.1088/0741-3335/50/9/095013
5.
5. D. K. Gupta, R. J. Fonck, G. R. McKee, D. J. Schlossberg, and M. W. Shafer, Phys. Rev. Lett. 97, 125002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.125002
6.
6. S. Coda, M. Porkolab, and K. H. Burrell, Phys. Rev. Lett. 86, 4835 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4835
7.
7. R. Sanchez, D. E. Newman, J.-N. Leboeuf, V. K. Decyk, and B. A. Carreras, Phys. Rev. Lett. 101, 205002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.205002
8.
8. C. Hidalgo, C. Silva, B. A. Carreras, B. van Milligen, H. Figueiredo, L. Garca, M. A. Pedrosa, B. Gonalves, and A. Alonso, Phys. Rev. Lett. 108, 065001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065001
9.
9. S. C. Chapman, R. O. Dendy, and B. Hnat, Phys. Rev. Lett. 86, 2814 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2814
10.
10. H. Zhu, S. C. Chapman, and R. O. Dendy, Phys. Plasmas 20, 042302 (2013).
http://dx.doi.org/10.1063/1.4800009
11.
11. H. Zhu, S. C. Chapman, R. O. Dendy, and K. Itoh, Phys. Plasmas 21, 062307 (2014).
http://dx.doi.org/10.1063/1.4884126
12.
12. G. M. D. Hogeweij, J. O'Rourke, and A. C. C. Sips, Plasma Phys. Controlled Fusion 33, 189 (1991).
http://dx.doi.org/10.1088/0741-3335/33/3/003
13.
13. B. J. D. Tubbing, N. J. Lopes Cardozo, and M. J. Van der Wiel, Nucl. Fusion 27, 1843 (1987).
http://dx.doi.org/10.1088/0029-5515/27/11/009
14.
14. T. C. Luce, C. C. Petty, and J. C. M. de Haas, Phys. Rev. Lett. 68, 52 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.52
15.
15. J. C. DeBoo, C. C. Petty, A. E. White, K. H. Burrell, E. J. Doyle, J. C. Hillesheim, C. Holland, G. R. McKee, T. L. Rhodes, L. Schmitz, S. P. Smith, G. Wang, and L. Zeng, Phys. Plasmas 19, 082518 (2012).
http://dx.doi.org/10.1063/1.4750061
16.
16. C. C. Petty and T. C. Luce, Nucl. Fusion 34, 121 (1994).
http://dx.doi.org/10.1088/0029-5515/34/1/I09
17.
17. S. Inagaki, H. Takenaga, K. Ida, A. Isayama, N. Tamura, T. Takizuka, T. Shimozuma, Y. Kamada, S. Kubo, Y. Miura, Y. Nagayama, K. Kawahata, S. Sudo, K. Ohkubo, LHD Experimental Group, and the JT-60 Team, Nucl. Fusion 46, 133 (2006).
http://dx.doi.org/10.1088/0029-5515/46/1/015
18.
18. H. Sun, X. Ding, L. Yao, B. Feng, Z. Liu, X. Duan, and Q. Yang, Plasma Phys. Controlled Fusion 52, 045003 (2010).
http://dx.doi.org/10.1088/0741-3335/52/4/045003
19.
19. J. E. Rice, C. Gao, M. L. Reinke, P. H. Diamond, N. T. Howard, H. J. Sun, I. Cziegler, A. E. Hubbard, Y. A. Podpaly, W. L. Rowan, J. L. Terry, M. A. Chilenski, L. Delgado-Aparicio, P. C. Ennever, D. Ernst, M. J. Greenwald, J. W. Hughes, Y. Ma, E. S. Marmar, M. Porkolab, A. E. White, and S. M. Wolfe, Nucl. Fusion 53, 033004 (2013).
http://dx.doi.org/10.1088/0029-5515/53/3/033004
20.
20. G. W. Spakman, G. M. D. Hogeweij, R. J. E. Jaspers, F. C. Schller, E. Westerhof, J. E. Boom, I. G. J. Classen, E. Delabie, C. Domier, A. J. H. Donne, M. Yu. Kantor, A. Kramer-Flecken, Y. Liang, N. C. Luhmann, Jr., H. K. Park, M. J. van de Pol, O. Schmitz, J. W. Oosterbeek, and the TEXTOR Team, Nucl. Fusion 48, 115005 (2008).
http://dx.doi.org/10.1088/0029-5515/48/11/115005
21.
21. D. L. Brower, S. K. Kim, K. W. Wenzel, M. E. Austin, M. S. Foster, R. F. Gandy, N. C. Luhmann, Jr., S. C. McCool, M. Nagatsu, W. A. Peebles, Ch. P. Ritz, and C. X. Yu, Phys. Rev. Lett. 65, 337 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.337
22.
22. P. Mantica, P. Galli, G. Gorini, G. M. D. Hogeweij, J. de Kloe, N. J. Lopes Cardozo, and RTP Team, Phys. Rev. Lett. 82, 5048 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.5048
23.
23. E. D. Fredrickson, J. D. Callen, K. McGuire, J. D. Bell, R. J. Colchin, P. C. Efthimion, K. W. Hill, R. Izzo, D. R. Mikkelsen, D. A. Monticello, V. Pare, G. Taylor, and M. Zarnstorff, Nucl. Fusion 26, 849 (1986).
http://dx.doi.org/10.1088/0029-5515/26/7/002
24.
24. S. Inagaki, N. Tamura, K. Ida, K. Tanaka, Y. Nagayama, K. Kawahata, S. Sudo, K. Itoh, S-I. Itoh, A. Komori, and LHD Experimental Group, Plasma Phys. Controlled Fusion 52, 075002 (2010).
http://dx.doi.org/10.1088/0741-3335/52/7/075002
25.
25. R. O. Dendy, S. C. Chapman, and S. Inagaki, Plasma Phys. Controlled Fusion 55, 115009 (2013).
http://dx.doi.org/10.1088/0741-3335/55/11/115009
26.
26. N. Tamura, S. Inagaki, K. Tanaka, C. Michael, T. Tokuzawa, T. Shimozuma, S. Kubo1, R. Sakamoto, K. Ida, K. Itoh, D. Kalinina, S. Sudo, Y. Nagayama, K. Kawahata, A. Komori, and LHD Experimental Group, Nucl. Fusion 47, 449 (2007).
http://dx.doi.org/10.1088/0029-5515/47/5/009
27.
27. S. Inagaki, K. Ida, N. Tamura, T. Shimozuma, S. Kubo, Y. Nagayama, K. Kawahata, S. Sudo, K. Ohkubo, and LHD Experimental Group, Plasma Phys. Controlled Fusion 46, A71 (2004).
http://dx.doi.org/10.1088/0741-3335/46/5A/007
28.
28. S. P. Eury, E. Harauchamps, X. Zou, and G. Giruzzi, Phys. Plasmas 12, 102511 (2005).
http://dx.doi.org/10.1063/1.2084887
29.
29. N. J. Lopes Cardozo, Plasma Phys. Controlled Fusion 37, 799 (1995).
http://dx.doi.org/10.1088/0741-3335/37/8/001
30.
30. F. Ryter, R. Dux, P. Mantica, and T. Tala, Plasma Phys. Controlled Fusion 52, 124043 (2010).
http://dx.doi.org/10.1088/0741-3335/52/12/124043
31.
31. N. A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 14, 18911900 (2009).
http://dx.doi.org/10.1016/j.cnsns.2008.09.020
32.
32. X. Garbet, Y. Sarazin, F. Imbeaux, P. Ghendrih, C. Bourdelle, O. D. Gurcan, and P. H. Diamond, Phys. Plasmas 14, 122305 (2007).
http://dx.doi.org/10.1063/1.2824375
33.
33. X. Garbet, L. Laurent, A. Samain, and J. Chinardet, Nucl. Fusion 34, 963 (1994).
http://dx.doi.org/10.1088/0029-5515/34/7/I04
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/6/10.1063/1.4923307
Loading
/content/aip/journal/pop/22/6/10.1063/1.4923307
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/6/10.1063/1.4923307
2015-06-26
2016-12-06

Abstract

It is known that rapid edge cooling of magnetically confined plasmas can trigger heat pulses that propagate rapidly inward. These can result in large excursion, either positive or negative, in the electron temperature at the core. A set of particularly detailed measurements was obtained in Large Helical Device (LHD) plasmas [S. Inagaki ., Plasma Phys. Controlled Fusion , 075002 (2010)], which are considered here. By applying a travelling wave transformation, we extend the model of Dendy ., Plasma Phys. Controlled Fusion , 115009 (2013), which successfully describes the local time-evolution of heat pulses in these plasmas, to include also spatial dependence. The new extended model comprises two coupled nonlinear first order differential equations for the (, ) evolution of the deviation from steady state of two independent variables: the excess electron temperature gradient and the excess heat flux, both of which are measured in the LHD experiments. The mathematical structure of the model equations implies a formula for the pulse velocity, defined in terms of plasma quantities, which aligns with empirical expectations and is within a factor of two of the measured values. We thus model spatio-temporal pulse evolution, from first principles, in a way which yields as output the spatiotemporal evolution of the electron temperature, which is also measured in detail in the experiments. We compare the model results against LHD datasets using appropriate initial and boundary conditions. Sensitivity of this nonlinear model with respect to plasma parameters, initial conditions, and boundary conditions is also investigated. We conclude that this model is able to match experimental data for the spatio-temporal evolution of the temperature profiles of these pulses, and their propagation velocities, across a broad radial range from to the plasma core. The model further implies that the heat pulse may be related mathematically to soliton solutions of the Korteweg-de Vries-Burgers equation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/6/1.4923307.html;jsessionid=G1-i_MAMO5_mOfa6L2gMBpwK.x-aip-live-06?itemId=/content/aip/journal/pop/22/6/10.1063/1.4923307&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/6/10.1063/1.4923307&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/6/10.1063/1.4923307'
Right1,Right2,Right3,