Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. H. Diamond, A. Hasegawa, and K. Mima, Plasma Phys. Controlled Fusion 53, 124001 (2011).
2. G. R. Tynan, A. Fujisawa, and G. McKee, Plasma Phys. Controlled Fusion 51, 113001 (2009).
3. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).
4. J. M. Dewhurst, B. Hnat, N. Ohno, R. O. Dendy, S. Masuzaki, T. Morisaki, and A. Komori, Plasma Phys. Controlled Fusion 50, 095013 (2008).
5. D. K. Gupta, R. J. Fonck, G. R. McKee, D. J. Schlossberg, and M. W. Shafer, Phys. Rev. Lett. 97, 125002 (2006).
6. S. Coda, M. Porkolab, and K. H. Burrell, Phys. Rev. Lett. 86, 4835 (2001).
7. R. Sanchez, D. E. Newman, J.-N. Leboeuf, V. K. Decyk, and B. A. Carreras, Phys. Rev. Lett. 101, 205002 (2008).
8. C. Hidalgo, C. Silva, B. A. Carreras, B. van Milligen, H. Figueiredo, L. Garca, M. A. Pedrosa, B. Gonalves, and A. Alonso, Phys. Rev. Lett. 108, 065001 (2012).
9. S. C. Chapman, R. O. Dendy, and B. Hnat, Phys. Rev. Lett. 86, 2814 (2001).
10. H. Zhu, S. C. Chapman, and R. O. Dendy, Phys. Plasmas 20, 042302 (2013).
11. H. Zhu, S. C. Chapman, R. O. Dendy, and K. Itoh, Phys. Plasmas 21, 062307 (2014).
12. G. M. D. Hogeweij, J. O'Rourke, and A. C. C. Sips, Plasma Phys. Controlled Fusion 33, 189 (1991).
13. B. J. D. Tubbing, N. J. Lopes Cardozo, and M. J. Van der Wiel, Nucl. Fusion 27, 1843 (1987).
14. T. C. Luce, C. C. Petty, and J. C. M. de Haas, Phys. Rev. Lett. 68, 52 (1992).
15. J. C. DeBoo, C. C. Petty, A. E. White, K. H. Burrell, E. J. Doyle, J. C. Hillesheim, C. Holland, G. R. McKee, T. L. Rhodes, L. Schmitz, S. P. Smith, G. Wang, and L. Zeng, Phys. Plasmas 19, 082518 (2012).
16. C. C. Petty and T. C. Luce, Nucl. Fusion 34, 121 (1994).
17. S. Inagaki, H. Takenaga, K. Ida, A. Isayama, N. Tamura, T. Takizuka, T. Shimozuma, Y. Kamada, S. Kubo, Y. Miura, Y. Nagayama, K. Kawahata, S. Sudo, K. Ohkubo, LHD Experimental Group, and the JT-60 Team, Nucl. Fusion 46, 133 (2006).
18. H. Sun, X. Ding, L. Yao, B. Feng, Z. Liu, X. Duan, and Q. Yang, Plasma Phys. Controlled Fusion 52, 045003 (2010).
19. J. E. Rice, C. Gao, M. L. Reinke, P. H. Diamond, N. T. Howard, H. J. Sun, I. Cziegler, A. E. Hubbard, Y. A. Podpaly, W. L. Rowan, J. L. Terry, M. A. Chilenski, L. Delgado-Aparicio, P. C. Ennever, D. Ernst, M. J. Greenwald, J. W. Hughes, Y. Ma, E. S. Marmar, M. Porkolab, A. E. White, and S. M. Wolfe, Nucl. Fusion 53, 033004 (2013).
20. G. W. Spakman, G. M. D. Hogeweij, R. J. E. Jaspers, F. C. Schller, E. Westerhof, J. E. Boom, I. G. J. Classen, E. Delabie, C. Domier, A. J. H. Donne, M. Yu. Kantor, A. Kramer-Flecken, Y. Liang, N. C. Luhmann, Jr., H. K. Park, M. J. van de Pol, O. Schmitz, J. W. Oosterbeek, and the TEXTOR Team, Nucl. Fusion 48, 115005 (2008).
21. D. L. Brower, S. K. Kim, K. W. Wenzel, M. E. Austin, M. S. Foster, R. F. Gandy, N. C. Luhmann, Jr., S. C. McCool, M. Nagatsu, W. A. Peebles, Ch. P. Ritz, and C. X. Yu, Phys. Rev. Lett. 65, 337 (1990).
22. P. Mantica, P. Galli, G. Gorini, G. M. D. Hogeweij, J. de Kloe, N. J. Lopes Cardozo, and RTP Team, Phys. Rev. Lett. 82, 5048 (1999).
23. E. D. Fredrickson, J. D. Callen, K. McGuire, J. D. Bell, R. J. Colchin, P. C. Efthimion, K. W. Hill, R. Izzo, D. R. Mikkelsen, D. A. Monticello, V. Pare, G. Taylor, and M. Zarnstorff, Nucl. Fusion 26, 849 (1986).
24. S. Inagaki, N. Tamura, K. Ida, K. Tanaka, Y. Nagayama, K. Kawahata, S. Sudo, K. Itoh, S-I. Itoh, A. Komori, and LHD Experimental Group, Plasma Phys. Controlled Fusion 52, 075002 (2010).
25. R. O. Dendy, S. C. Chapman, and S. Inagaki, Plasma Phys. Controlled Fusion 55, 115009 (2013).
26. N. Tamura, S. Inagaki, K. Tanaka, C. Michael, T. Tokuzawa, T. Shimozuma, S. Kubo1, R. Sakamoto, K. Ida, K. Itoh, D. Kalinina, S. Sudo, Y. Nagayama, K. Kawahata, A. Komori, and LHD Experimental Group, Nucl. Fusion 47, 449 (2007).
27. S. Inagaki, K. Ida, N. Tamura, T. Shimozuma, S. Kubo, Y. Nagayama, K. Kawahata, S. Sudo, K. Ohkubo, and LHD Experimental Group, Plasma Phys. Controlled Fusion 46, A71 (2004).
28. S. P. Eury, E. Harauchamps, X. Zou, and G. Giruzzi, Phys. Plasmas 12, 102511 (2005).
29. N. J. Lopes Cardozo, Plasma Phys. Controlled Fusion 37, 799 (1995).
30. F. Ryter, R. Dux, P. Mantica, and T. Tala, Plasma Phys. Controlled Fusion 52, 124043 (2010).
31. N. A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 14, 18911900 (2009).
32. X. Garbet, Y. Sarazin, F. Imbeaux, P. Ghendrih, C. Bourdelle, O. D. Gurcan, and P. H. Diamond, Phys. Plasmas 14, 122305 (2007).
33. X. Garbet, L. Laurent, A. Samain, and J. Chinardet, Nucl. Fusion 34, 963 (1994).

Data & Media loading...


Article metrics loading...



It is known that rapid edge cooling of magnetically confined plasmas can trigger heat pulses that propagate rapidly inward. These can result in large excursion, either positive or negative, in the electron temperature at the core. A set of particularly detailed measurements was obtained in Large Helical Device (LHD) plasmas [S. Inagaki ., Plasma Phys. Controlled Fusion , 075002 (2010)], which are considered here. By applying a travelling wave transformation, we extend the model of Dendy ., Plasma Phys. Controlled Fusion , 115009 (2013), which successfully describes the local time-evolution of heat pulses in these plasmas, to include also spatial dependence. The new extended model comprises two coupled nonlinear first order differential equations for the (, ) evolution of the deviation from steady state of two independent variables: the excess electron temperature gradient and the excess heat flux, both of which are measured in the LHD experiments. The mathematical structure of the model equations implies a formula for the pulse velocity, defined in terms of plasma quantities, which aligns with empirical expectations and is within a factor of two of the measured values. We thus model spatio-temporal pulse evolution, from first principles, in a way which yields as output the spatiotemporal evolution of the electron temperature, which is also measured in detail in the experiments. We compare the model results against LHD datasets using appropriate initial and boundary conditions. Sensitivity of this nonlinear model with respect to plasma parameters, initial conditions, and boundary conditions is also investigated. We conclude that this model is able to match experimental data for the spatio-temporal evolution of the temperature profiles of these pulses, and their propagation velocities, across a broad radial range from to the plasma core. The model further implies that the heat pulse may be related mathematically to soliton solutions of the Korteweg-de Vries-Burgers equation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd