Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. J. Ampleford, C. A. Jennings, G. N. Hall, S. V. Lebedev, S. N. Bland, S. C. Bott, and A. Ciardi, “ Bow shocks in ablated plasma streams for nested wire array z-pinches: A laboratory astrophysics testbed for radiatively cooled shocksa),” Phys. Plasmas 17(5), 056315 (2010).
2. I. C. Blesener, J. B. Greenly, B. R. Kusse, K. S. Blesener, C. E. Seyler, and D. A. Hammer, “ Pinching of ablation streams via magnetic field curvature in wire-array Z-pinches,” Phys. Plasmas 19(2), 022109 (2012).
3. J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, and P. L. Pritchett, “ Geospace environmental modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res.: Space Phys. 106(A3), 37153719 (2001).
4. S. C. Bott, D. Mariscal, K. Gunasekera, J. Peebles, F. N. Beg, D. A. Hammer, and P. F. Knapp, “ Experimental analysis of the acceleration region in tungsten wire arrays,” IEEE Trans. Plasma Sci. 40(12), 33243328 (2012).
5. S. C. Bott-Suzuki, L. S. C. Bendixsen, S. W. Cordaro, I. C. Blesener, C. L. Hoyt, A. D. Cahill, and D. J. Ampleford, “ Investigation of radiative bow-shocks in magnetically accelerated plasma flows,” Phys. Plasmas 22, 052710 (2015).
6. M. Brio and C. C. Wu, “ An upwind differencing scheme for the equations of ideal magnetohydrodynamics,” J. Comput. Phys. 75(2), 400422 (1988).
7. L. Chacón and D. A. Knoll, “ A 2D high-β Hall MHD implicit nonlinear solver,” J. Comput. Phys. 188(2), 573592 (2003).
8. R. P. Drake, High-Energy-Density Physics ( Springer-Verlag, Berlin, 2006), p. 296.
9. S. A. E. G. Falle, S. S. Komissarov, and P. Joarder, “ A multidimensional upwind scheme for magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 297(1), 265277 (1998).
10. P. A. Gourdain, I. C. Blesener, J. B. Greenly, D. A. Hammer, P. F. Knapp, B. R. Kusse, and T. C. Shelkovenko, “ High energy density plasmas generated by radial foil explosions,” Plasma Phys. Controlled Fusion 52(5), 055015 (2010).
11. P. A. Gourdain and C. E. Seyler, “ Impact of the Hall Effect on high-energy-density plasma jets,” Phys. Rev. Lett. 110(1), 015002 (2013).
12. A. H. Hakim, “ Extended MHD modeling with the ten-moment equations,” J. Fusion Energy 27(1–2), 3643 (2008).
13. H. Hoteit, P. Ackerer, R. Mos, J. Erhel, and B. Philippe, “ New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes,” Int. J. Numer. Methods Eng. 61(14), 25662593 (2004).
14. J. D. Huba, “ Numerical methods: Ideal and Hall MHD,” in Proceedings of ISSS, March (2005), Vol. 7, pp. 2631.
15. J. D. Huba, “ Hall dynamics of the Kelvin-Helmholtz instability,” Phys. Rev. Lett. 72(13), 2033 (1994).
16. J. D. Huba and D. Winske, “ RayleighTaylor instability: Comparison of hybrid and nonideal magnetohydrodynamic simulations,” Phys. Plasmas 5(6), 23052316 (1998).
17. H. Lichtenegger, H. Lammer, and W. Stumptner, “ Energetic neutral atoms at Mars 3. Flux and energy distributions of planetary energetic H atoms,” J. Geophys. Res.: Space Phys. 107(A10), SSH-6 (2002).
18. F. Li and C. W. Shu, “ Locally divergence-free discontinuous Galerkin methods for MHD equations,” J. Sci. Comput. 22–23(1–3), 413442 (2005).
19. E. Liverts and M. Mond, “ The Hall instability in accelerated plasma channels,” Phys. Plasmas 11(1), 5561 (2004).
20. J. Loverich and U. Shumlak, “ A discontinuous Galerkin method for the full two-fluid plasma model,” Comput. Phys. Commun. 169(1), 251255 (2005).
21. J. Loverich, A. Hakim, and U. Shumlak, “ A discontinuous Galerkin method for ideal two-fluid plasma equations,” Communications in Computational Physics 9, 240 (2011).
22. K. Malakit, P. A. Cassak, M. A. Shay, and J. F. Drake, “ The hall effect in magnetic reconnection: Hybrid versus Hallless hybrid simulations,” Geophys. Res. Lett. 36, 7, doi:10.1029/2009GL037538 (2009).
23. M. Martin, “ Generalized Ohm's law at the plasma-vacuum interface,” Doctoral dissertation, Cornell University, 2010.
24. E. N. Parker, “ Sweets mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res. 62, 509, doi:10.1029/JZ062i004p00509 (1957).
25. E. N. Parker, “ The solar-flare phenomenon and the theory of reconnection and annihiliation of magnetic fields,” Astrophys. J. Suppl. 8, 177 (1963).
26. J. L. Peebles, S. C. Bott, K. Gunasekera, J. Kim, L. Harpster, B. Evans, and F. N. Beg, “ Examination of bow-shock formation in supersonic radiatively cooled plasma flows,” IEEE Trans. Plasma Sci. 39(11), 24222423 (2011).
27. H. E. Petschek, “ Magnetic field annihilation,” in AAS/NASA Symposium on the Physics of Solar Flares, edited by W. N. Ness ( NASA, Washington, DC, 1964), p. 425.
28. Y. Saitou, Y. Nakamura, T. Kamimura, and O. Ishihara, “ Bow shock formation in a complex plasma,” Phys. Rev. Lett. 108(6), 065004 (2012).
29. D. D. Schnack, Lectures in Magnetohydrodynamics: With an Appendix on Extended MHD ( Springer, 2009), Vol. 780.
30. C. E. Seyler and M. R. Martin, “ Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches,” Phys. Plasmas 18, 012703 (2011).
31. M. A. Shay, J. F. Drake, and M. Swisdak, “ Two-scale structure of the electron dissipation region during collisionless magnetic reconnection,” Phys. Rev. Lett. 99(15), 155002 (2007).
32. C. R. Sovinec, D. D. Schnack, A. Y. Pankin, D. P. Brennan, H. Tian, D. C. Barnes, and S. C. Jardin, “ Nonlinear extended magnetohydrodynamics simulation using high-order finite elements,” J. Phys. Conf. Ser. 16(1), 25 (2005).
33. K. Stasiewicz, C. E. Seyler, F. S. Mozer, G. Gustafsson, J. Pickett, and B. Popielawska, “ Magnetic bubbles and kinetic Alfvn waves in the highlatitude magnetopause boundary,” J. Geophys. Res.: Space Phys. 106(A12), 2950329514 (2001).
34. F. Suzuki-Vidal, S. V. Lebedev, S. N. Bland, G. N. Hall, G. Swadling, A. J. Harvey-Thompson, and S. C. Bott, “ Experimental studies of magnetically driven plasma jets,” Astrophys. Space Sci. 336(1), 4146 (2011).
35. P. A. Sweet, “ The neutral point theory of solar flares,” in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert ( Cambridge University Press, New York, 1958), p. 123.
36. X. Zhao, Y. Yang, and C. E. Seyler, “ A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations,” J. Comput. Phys. 278, 400415 (2014).

Data & Media loading...


Article metrics loading...



The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock,magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number and the ratio of thermal pressure to magnetic pressure, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd