Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Keilhacker, Plasma Phys. Controlled Fusion 26, 49 (1984).
2. V. Erckmann, F. Wagner, J. Baldzuhn, R. Brakel, R. Burhenn, U. Gasparino, P. Grigull, H. J. Hartfuss, J. V. Hofmann, R. Jaenicke et al., Phys. Rev. Lett. 70, 2086 (1993).
3. H. Zohm, Plasma Phys. Controlled Fusion 38, 105 (1996).
4. A. Loarte, G. Saibene, R. Sartori, D. Campbell, M. Becoulet, L. Horton, T. Eich, A. Herrmann, G. Matthews, N. Asakura, A. Chankin, A. Leonard, G. Porter, G. Federici, G. Janeschitz, M. Shimada, and M. Sugiharaet, Plasma Phys. Controlled Fusion 45, 1549 (2003).
5. K. Kamiya, N. Asakura, J. Boedo, T. Eich, G. Federici, M. Fenstermacher, K. Finken, A. Herrmann, J. Terry, A. Kirk, B. Koch, A. Loarte, R. Maingi, R. Maqueda, E. Nardon, N. Oyama, and R. Sartori, Plasma Phys. Controlled Fusion 49, S43 (2007).
6. R. J. Hawryluk, D. J. Campbell, G. Janeschitz, P. R. Thomas, R. Albanese, R. Ambrosino, C. Bachmann, L. Baylor, M. Becoulet, I. Benfatto, J. Bialek et al., Nucl. Fusion 49, 065012 (2009).
7. J. W. Connor, Plasma Phys. Controlled Fusion 40, 191 (1998).
8. P. B. Snyder, H. R. Wilson, J. R. Ferron, L. L. Lao, A. W. Leonard, T. H. Osborne, A. D. Turnbull, D. Mossessian, M. Murakami, and X. Q. Xu, Phys. Plasmas 9, 2037 (2002).
9. G. S. Yun, W. Lee, M. J. Choi, J. Lee, H. K. Park, B. Tobias, C. W. Domier, N. C. Luhmann, Jr., A. J. H. Donn, J. H. Lee, and (KSTAR Team), Phys. Rev. Lett. 107, 045004 (2011).
10. A. W. Degeling, Y. R. Martin, P. E. Bak, J. B. Lister, and X. Llobet, Plasma Phys. Controlled Fusion 43, 1671 (2001).
11. J. Greenhough, S. C. Chapman, R. O. Dendy, and D. J. Ward, Plasma Phys. Controlled Fusion 45, 747 (2003).
12. F. A. Calderon, R. O. Dendy, S. C. Chapman, A. J. Webster, B. Alper, R. M. Nicol, and JET EDFA Contributors, Phys. Plasmas 20, 042306 (2013).
13. A. J. Webster and R. O. Dendy, Phys. Rev. Lett. 110, 155004 (2013).
14. A. J. Webster, R. O. Dendy, F. Calderon, S. C. Chapman, E. Delabie, D. Dodt, R. Felton, T. Todd, V. Riccardo, B. Alper, S. Brezinsek et al., Plasma Phys. Controlled Fusion 56, 075017 (2014).
15. A. Murari, F. Pisano, J. Vega, B. Cannas, A. Fanni, S. Gonzalez, M. Gelfusa, M. Grosso, and JET EFDA Contributors, Plasma Phys. Controlled Fusion 56, 114007 (2014).
16. S. C. Chapman, R. O. Dendy, T. N. Todd, N. W. Watkins, A. J. Webster, F. A. Calderon et al., Phys. Plasmas 21, 062302 (2014).
17. S. C. Chapman, R. O. Dendy, A. J. Webster, N. W. Watkins, T. N. Todd, J. Morris, and JET EFDA Contributors, in 41st EPS Conference on Plasma Physics, Europhysics Conference Abstracts ( European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8.
18. D. Gabor, Proc. IEE 93(III), 429 (1946).
19. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. ( McGraw Hill, 1986).
20. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).
21. A. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ( Cambridge University Press, 2003).
22. J. T. C. Schwabedal and A. S. Pikovsky, Phys. Rev. Lett. 110, 204102 (2013).
23. N. I. Fisher, Statistical Analysis of Circular Data, revised edition ( Cambridge University Press, 1995).
24. P. Berens, J. Stat. Software 31, 10 (2009).
25. E. de la Luna et al., in Proceedings of the 36th EPS Conference on Plasma Physics, Sofia, Bulgaria, 29th June–3rd July 2009.
26. F. Sartori et al., in 35th EPS Conference on Plasma Physics, ECA, Hersonissos, 9–13 June 2008 (2008), Vol. 32D, p. 5.045.
27. P. T. Lang et al., Plasma Phys. Controlled Fusion 46, L31L39 (2004).
28. S. P. Gerhardt, J.-W. Ahn, J. M. Canik, R. Maingi, R. Bell, D. Gates, R. Goldston, R. Hawryluk, B. P. Le Blanc, J. Menard, A. C. Sontag, S. Sabbagh, and K. Tritz, Nucl. Fusion 50, 064015 (2010).
29. Neto et al., in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, 12–15 December 2011.
30. S. H. Kim, M. M. Cavinato, V. Dokuka, A. A. Ivanov, R. R. Khayrutdinov, P. T. Lang, J. B. Lister, V. E. Lukash, Y. R. Martin, S. Yu Medvedev, and L. Villard, Plasma Phys. Controlled Fusion 51, 055021 (2009).

Data & Media loading...


Article metrics loading...



A global signature of the build-up to an intrinsic edge localized mode (ELM) is found in the temporal analytic phase of signals measured in full flux azimuthal loops in the divertor region of JET. Toroidally integrating, full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously [Chapman ., Phys. Plasmas , 062302 (2014); Chapman ., in , (European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8] found that the occurrence times of intrinsic ELMs correlate with specific temporal analytic phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 temporal analytic phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the temporal analytic phase at which ELMs preferentially occur, on a timescale. At the same time, the VLD2 and VLD3 signals become temporally phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM prediction or mitigation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd