Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/9/10.1063/1.4930134
1.
1. B. A. Buffett, Science 288, 2007 (2000).
http://dx.doi.org/10.1126/science.288.5473.2007
2.
2. A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981).
http://dx.doi.org/10.1016/0031-9201(81)90046-7
3.
3. J. Wang, R. F. Smith, J. H. Eggert, D. G. Braun, T. R. Boehly, J. Reed Patterson, P. M. Celliers, R. Jeanloz, G. W. Collins, and T. S. Duffy, J. Appl. Phys. 114, 023513 (2013).
http://dx.doi.org/10.1063/1.4813091
4.
4. S. Seager, M. Kuchner, C. A. Hier-Majumder, and B. Militzer, “ Mass-radius relationships for solid exoplanets,” Astrophys. J. 669, 12791297 (2007).
http://dx.doi.org/10.1086/521346
5.
5. J. Schneider, C. Dedieu, P. Le Sidaner, R. Savalle, and I. Zolotukhin, “ Defining and cataloging exoplanets: The exoplanet.eu database,” Astron. Astrophys. 532, A79 (2011).
http://dx.doi.org/10.1051/0004-6361/201116713
6.
6. D. Valencia, R. J. O'Connell, and D. Sasselov, Icarus 181, 545 (2006).
http://dx.doi.org/10.1016/j.icarus.2005.11.021
7.
7. D. Valencia, R. O'Connell, and D. Sasselov, Astrophys. Space Sci. 322, 135 (2009).
http://dx.doi.org/10.1007/s10509-009-0034-6
8.
8. D. C. Swift, J. H. Eggert, D. G. Hicks, S. Hamel, K. Caspersen, E. Schwegler, G. W. Collins, N. Nettelmann, and G. J. Ackland, Astrophys. J. 744, 59 (2012).
http://dx.doi.org/10.1088/0004-637X/744/1/59
9.
9. J. J. Fortney, S. H. Glenzer, M. Koenig, B. Militzer, D. Saumon, and D. Valencia, Phys. Plasmas 16, 041003 (2009).
http://dx.doi.org/10.1063/1.3101818
10.
10. C. Sotin, O. Grasset, and A. Mocquet, Icarus 191, 337 (2007).
http://dx.doi.org/10.1016/j.icarus.2007.04.006
11.
11. S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, and S. Glenzer, Phys. Plasmas 18, 051001 (2011).
http://dx.doi.org/10.1063/1.3592169
12.
12. M. J. Edwards, J. D. Lindl, B. K. Spears, S. V. Weber, L. J. Atherton, D. L. Bleuel, D. K. Bradley, D. A. Callahan, C. J. Cerjan, D Clark et al., Phys. Plasmas 18, 051003 (2011).
http://dx.doi.org/10.1063/1.3592173
13.
13. M. J. Edwards, P. K. Patel, J. D. Lindl, L. J. Atherton, S. H. Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, E. I. Moses, and A. Nikroo, Phys. Plasmas 20, 070501 (2013).
http://dx.doi.org/10.1063/1.4816115
14.
14. M. D. Rosen, Phys. Plasmas 3, 1803 (1996).
http://dx.doi.org/10.1063/1.871683
15.
15. M. D. Rosen, Phys. Plasmas 6, 1690 (1999).
http://dx.doi.org/10.1063/1.873427
16.
16. O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014).
http://dx.doi.org/10.1063/1.4874330
17.
17. B. A. Remington, D. Arnett, R. Paul Drake, and H. Takabe, Science 284, 1488 (1999).
http://dx.doi.org/10.1126/science.284.5419.1488
18.
18. B. A. Remington, R. Paul Drake, H. Takabe, and D. Arnett, Phys. Plasmas 7, 1641 (2000).
http://dx.doi.org/10.1063/1.874046
19.
19. B. A. Remington, R. Paul Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 755 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.755
20.
20. L. Dubrovinsky, N. Dubrovinskaia, V. B. Prakapenka, and A. M. Abakumov, Nat. Commun. 3, 1163 (2012).
http://dx.doi.org/10.1038/ncomms2160
21.
21. R. E. Rudd, T. C. Germann, B. A. Remington, and J. S. Wark, MRS Bull. 35, 999 (2010).
http://dx.doi.org/10.1557/mrs2010.705
22.
22. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).
http://dx.doi.org/10.1063/1.1663148
23.
23. D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).
http://dx.doi.org/10.1063/1.1722359
24.
24. R. F. Smith, J. H. Eggert, D. C. Swift, J. Wang, T. S. Duffy, D. G. Braun, R. E. Rudd, D. B. Reisman, J.-P. Davis, M. D. Knudson, and G. W. Collins, J. Appl. Phys. 114, 223507 (2013).
http://dx.doi.org/10.1063/1.4839655
25.
25. M. Keith Matzen, M. A. Sweeney, R. G. Adams, J. R. Asay, J. E. Bailey, G. R. Bennett, D. E. Bliss, D. D. Bloomquist, T. A. Brunner, and R. B. Campbell, Phys. Plasmas 12, 055503 (2005).
http://dx.doi.org/10.1063/1.1891746
26.
26. J. S. Wark, R. R. Whitlock, A. A. Hauer, J. E. Swain, and P. J. Solone, Phys. Rev. B 40, 5705 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5705
27.
27. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997).
http://dx.doi.org/10.1016/S0030-4018(96)00325-2
28.
28. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, Phys. Rev. Lett. 107, 144302 (2011);
http://dx.doi.org/10.1103/PhysRevLett.107.144302
28. J. C. Crowhurst, R. W. Reed, M. R. Armstrong, H. B. Radousky, J. A. Carter, D. C. Swift, J. M. Zaug, R. W. Minich, N. E. Teslich, and M. Kumar, J. Appl. Phys. 115, 113506 (2014).
http://dx.doi.org/10.1063/1.4868676
29.
29. T. Sakaiya, H. Takahashi, T. Kondo, T. Kadono, Y. Hironaka, T. Irifune, and K. Shigemori, Earth Planet. Sci. Lett. 392, 80 (2014).
http://dx.doi.org/10.1016/j.epsl.2014.02.019
30.
30. K. Shigemori, T. Sakaiya, Y. Asakura, T. Kondo, K. Shimizu, T. Kadono, Y. Hironaka, and H. Azechi, Rev. Sci. Instrum. 83, 10E529 (2012).
http://dx.doi.org/10.1063/1.4739055
31.
31. N. Amadou, E. Brambrink, T. Vinci, A. Benuzzi-Mounaix, G. Huser, S. Brygoo, G. Morard, F. Guyot, T. de Resseguier, S. Mazevet, K. Miyanishi, N. Ozaki, R. Kodama, O. Henry, D. Raffestin, T. Boehly, and M. Koenig, Phys. Plasmas 22, 022705 (2015).
http://dx.doi.org/10.1063/1.4907244
32.
32. J. S. Wark, R. R. Whitlock, A. Hauer, J. E. Swain, and P. J. Solone, Phys. Rev. B 35, 9391 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9391
33.
33. A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. Kalantar, G. Kyrala, R. W. Lee, P. Lomdahl, M. A. Meyers, D. Paisley, S. Pollaine, B. Remington, D. C. Swift, S. Weber, and J. S. Wark, Phys. Rev. Lett. 86, 2349 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2349
34.
34. G. Mogni, A. Higginbotham, K. Gaál-Nagy, N. Park, and J. S. Wark, Phys. Rev. B 89, 064104 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.064104
35.
35. B. L. Holian and P. S. Lombdahl, Science 280, 2085 (1998).
http://dx.doi.org/10.1126/science.280.5372.2085
36.
36. K. Rosolankova, D. H. Kalantar, J. F. Belak, E. M. Bringa, M. J. Caturla, J. Hawreliak, B. L. Holian, K. Kadau, P. S. Lomdahl, T. C. Germann, R. Ravelo, J. Sheppard, J. S. Wark et al., in Shock Compression of Condensed Matter-2003, edited by M. D. Furnish, Y. M. Gupta, and J. W. Forbes ( AIP, Melville, New York, 2004), p. 1195.
37.
37. E. M. Bringa, K. Rosolankova, R. E. Rudd, B. A. Remington, J. S. Wark, M. Duchaineau, D. H. Kalantar, J. Hawreliak, and J. Belak, Nature Mater. 5, 805 (2006).
http://dx.doi.org/10.1038/nmat1735
38.
38. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106224121 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.224106
39.
39. D. Milathianaki, S. Boutet, G. J. Williams, A. Higginbotham, D. Ratner, A. E. Gleason, M. Messerschmidt, M. M. Seibert, D. C. Swift, P. Hering, J. Robinson, W. E. White, and J. S. Wark, Science 342, 220 (2013).
http://dx.doi.org/10.1126/science.1239566
40.
40. V. Dupont and T. C. Germann, Phys. Rev. B 86, 134111 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134111
41.
41. D. H. Kalantar, J. F. Belak, G. W. Collins, J. D. Colvin, H. M. Davies, J. H. Eggert, T. C. Germann, J. Hawreliak, B. L. Holian, K. Kadau, P. S. Lomdahl, H. E. Lorenzana, M. A. Meyers, K. Rosolankova, M. S. Schneider, J. Sheppard, J. S. Stolken, and J. S. Wark, Phys. Rev. Lett. 95, 075502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.075502
42.
42. J. Hawreliak, J. D. Colvin, J. H. Eggert, D. H. Kalantar, H. E. Lorenzana, J. S. Stölken, H. M. Davies, T. C. Germann, B. L. Holian, K. Kadau, P. S. Lomdahl, A. Higginbotham, K. Rosolankova, J. Sheppard, and J. S. Wark, Phys. Rev. B 74, 184107 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.184107
43.
43. J. Wark, A. Higginbotham, G. Kimminau, W. Murphy, B. Nagler, T. Whitcher, J. Hawreliak, D. Kalantar, M. Butterfield, B. El-Dasher, J. McNaney, D. Milathianaki, H. Lorenzana, B. Remington, H. Davies, L. Thornton, N. Park, and S. Lukezic, in Proceedings of the SCCM-07 (2007), p. 286.
44.
44. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Science 296, 1681 (2002).
http://dx.doi.org/10.1126/science.1070375
45.
45. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Phys. Rev. B 72, 064120 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064120
46.
46. J. Hawreliak, D. H. Kalantar, J. S. Stölken, B. A. Remington, H. E. Lorenzana, and J. S. Wark, Phys. Rev. B 78, 220101(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.220101
47.
47. J. Hawreliak, B. El-Dasher, H. Lorenzana, G. Kimminau, A. Higginbotham, B. Nagler, S. M. Vinko, W. J. Murphy, T. Whitcher, J. S. Wark, S. Rothman, and N. Park, Phys. Rev. B 83, 144114 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144114
48.
48. K. Kadau, T. C. Germann, P. S. Lomdahl, R. C. Albers, J. S. Wark, A. Higginbotham, and B. L. Holian, Phys. Rev. Lett. 98, 135701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.135701
49.
49. T. S. Duffy, R. J. Hemley, and H.-k. Mao, Phys. Rev. Lett. 74, 1371 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1371
50.
50. K. Umemoto, R. M. Wentzcovitch, and P. B. Allen, Science 311, 983 (2006).
http://dx.doi.org/10.1126/science.1120865
51.
51. R. Stewart McWilliams, D. K. Spaulding, J. H. Eggert, P. M. Celliers, D. G. Hicks, R. F. Smith, G. W. Collins, and R. Jeanloz, Science 338, 1330 (2012).
http://dx.doi.org/10.1126/science.1229450
52.
52. F. Coppari, R. F. Smith, J. H. Eggert, J. Wang, J. R. Rygg, A. Lazicki, J. A. Hawreliak, G. W. Collins, and T. S Duffy, Nature Geosci. 6, 926 (2013).
http://dx.doi.org/10.1038/ngeo1948
53.
53. D. C. Konningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES ( John Wiley & Sons, 1988).
54.
54. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.769
55.
55. B. Yaakobi, F. J. Marshall, T. R. Boehly, R. P. J. Town, and D. D. Meyerhofer, J. Optical Soc. Am. B 20, 238 (2003).
http://dx.doi.org/10.1364/JOSAB.20.000238
56.
56. B. Yaakobi, D. D. Meyerhofer, T. R. Boehly, J. J. Rehr, B. A. Remington, P. G. Allen, S. M. Pollaine, and R. C. Albers, Phys. Rev. Lett. 92, 095504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.095504
57.
57. B. Yaakobi, D. D. Meyerhofer, T. R. Boehly, J. J. Rehr, B. A. Remington, P. G. Allen, S. M. Pollaine, and R. C. Albers, Phys. Plasmas 11, 2688 (2004).
http://dx.doi.org/10.1063/1.1646673
58.
58. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.621
59.
59. Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo, and H.-k. Mao, Phys. Rev. Lett. 98, 085502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.085502
60.
60. G B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975).
61.
61. B. Yaakobi, T. R. Boehly, D. D. Meyerhofer, T. J. B. Collins, B. A. Remington, P. G. Allen, S. M. Pollaine, H. E. Lorenzana, and J. H. Eggert, Phys. Rev. Lett. 95, 075501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.075501
62.
62. B. Yaakobi, T. R. Boehly, D. D. Meyerhofer, T. J. B. Collins, B. A. Remington, P. G. Allen, S. M. Pollaine, H. E. Lorenzana, and J. H. Eggert, Phys. Plasmas 12, 092703 (2005).
http://dx.doi.org/10.1063/1.2036887
63.
63. Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, Phys. Rev. Lett. 111, 065501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.065501
64.
64. A. Di Cicco, M. Berrettoni, S. Stizza, E. Bonetti, and G. Cocco, Phys. Rev. B 50, 12386 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.12386
65.
65. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B 35, 9085 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9085
66.
66. A. Higginbotham, R. C. Albers, T. C. Germann, B. L. Holian, K. Kadau, P. S. Lomdahl, W. J. Murphy, B. Nagler, and J. S. Wark, High Energy Density Phys. 5, 44 (2009).
http://dx.doi.org/10.1016/j.hedp.2009.02.001
67.
67. R. J. Hemley, H.-k. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, Science 276, 1242 (1997).
http://dx.doi.org/10.1126/science.276.5316.1242
68.
68. N. R. Barton, J. V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park, B. A. Remington, and R. T. Olson, J. Appl. Phys. 109, 073501 (2011).
http://dx.doi.org/10.1063/1.3553718
69.
69. R. E. Rudd, A. J. Comley, J. Hawreliak, B. Maddox, H.-S. Park, and B. A. Remington, in Shock Compression of Condensed Matter–2011, edited by M. L. Elert, W. T. Buttler, J. P. Borg, J. L. Jordan, and T. J. Vogler ( American Institute of Physics, Melville, 2012), Vol. 1426, p. 1379.
70.
70. R. E. Rudd, A. Arsenlis, N. R. Barton, R. M. Cavallo, A. J. Comley, B. R. Maddox, J. Marian, H.-S. Park, S. T. Prisbrey, C. E. Wehrenberg, L. Zepeda-Ruiz, and B. A. Remington, J. Phys. Conf. Ser. 500, 112055 (2014).
http://dx.doi.org/10.1088/1742-6596/500/11/112055
71.
71. B. A. Remington, G. Bazan, J. Belak, E. Bringa, M. Caturla, J. D. Colvin, M. J. Edwards, S. G. Glendinning, D. S. Ivanov, B. Kkad, D. H. Kalantar, M. Kumar, B. F. Lasinski, K. T. Lorenz, J. M. McNaney, D. D. Meyerhofer, M. A. Meyers, S. M. Pollaine, D. Rowley, M. Schneider, J. S. Stölken, J. S. Wark, S. V. Weber, W. G. Wolfer, B. Yaakobi, and L. V. Zhigilei, Metall. Mater. Trans. A 35, 2587 (2004).
http://dx.doi.org/10.1007/s11661-004-0205-6
72.
72. B. A. Remington, P. Allen, E. M. Bringa, J. Hawreliak, D. Ho, K. T. Lorenz, H. Lorenzana, J. M. McNaney, M. A. Meyers, S. W. Pollaine, K. Rosolankova, B. Sadik, M. S. Schneider, D. Swift, J. Wark, and B. Yaakobi, Mater. Sci. Technol. 22, 474 (2006).
http://dx.doi.org/10.1179/174328406X91069
73.
73. D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl. Phys. 51, 1498 (1980).
http://dx.doi.org/10.1063/1.327799
74.
74. D. J. Steinberg and C. M. Lund, J. Appl. Phys. 65, 1528 (1989).
http://dx.doi.org/10.1063/1.342968
75.
75. D. L. Preston, D. L. Tonks, and D. C. Wallace, J. Appl. Phys. 93, 211 (2003).
http://dx.doi.org/10.1063/1.1524706
76.
76. J. F. Barnes, P. J. Blewett, R. G. McQueen, K. A. Meyer, and D. Venable, J. Appl. Phys. 45, 727 (1974).
http://dx.doi.org/10.1063/1.1663310
77.
77. J. D. Colvin, M. Legrand, B. A. Remington, G. Schurtz, and S. V. Weber, J. Appl. Phys. 93, 5287 (2003).
http://dx.doi.org/10.1063/1.1565188
78.
78. A. C. Robinson and J. W. Swegle, J. Appl. Phys. 66, 2859 (1989).
http://dx.doi.org/10.1063/1.344191
79.
79. J. W. Swegle and A. C. Robinson, J. Appl. Phys. 66, 2838 (1989).
http://dx.doi.org/10.1063/1.344190
80.
80. T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key, L. J. Atherton, L. R. Benedetti, D. K. Bradley, D. A. Callahan, and P. M. Celliers, Phys. Rev. Lett. 111, 085004 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.085004
81.
81. S. R. Chen and G. T. Gray III, Metal. Mater. Trans. A 27, 2994 (1996).
http://dx.doi.org/10.1007/BF02663849
82.
82. H.-S. Park, K. T. Lorenz, R. M. Cavallo, S. M. Pollaine, S. T. Prisbrey, R. E. Rudd, R. C. Becker, J. V. Bernier, and B. A. Remington, Phys. Rev. Lett. 104, 135504 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.135504
83.
83. H.-S. Park, B. A. Remington, R. C. Becker, J. V. Bernier, R. M. Cavallo, K. T. Lorenz, S. M. Pollaine, S. T. Prisbrey, R. E. Rudd, and N. R. Barton, Phys. Plasmas 17, 056314 (2010).
http://dx.doi.org/10.1063/1.3363170
84.
84. H. S. Park, N. R. Barton, J. L. Belof, K. J. M. Blobaum, R. M. Cavallo, A. J. Comley, B. R. Maddox, M. J. May, S. M. Pollaine, S. T. Prisbrey, B. A. Remington, R. E. Rudd, D. W. Swift, R. J. Wallace, M. J. Wilson, A. Nikroo, and E. Giraldez, in Shock Compression of Condensed Matter—2011, edited by M. L. Elert, W. T. Buttler, J. P. Borg, J. L. Jordan, and T. J. Vogler ( American Institute of Physics, Melville, 2012), Vol. 1426, p. 1371.
85.
85. H.-S. Park, R. E. Rudd, R. M. Cavallo, N. R. Barton, A. Arsenlis, J. L. Belof, K. J. M. Blobaum, B. S. El-dasher, J. N. Florando, C. M. Huntington, B. R. Maddox, M. J. May, C. Plechaty, S. T. Prisbrey, B. A. Remington, R. J. Wallace, C. E. Wehrenberg, M. J. Wilson, A. J. Comley, E. Giraldez, A. Nikroo, M. Farrell, G. Randall, and G. T. Gray III, Phys. Rev. Lett. 114, 065502 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.065502
86.
86. B. A. Remington, R. E. Rudd, N. R. Barton, R. M. Cavallo, H.-S. Park, J. Belof, A. J. Comley, B. R. Maddox, M. J. May, S. M. Pollaine, and S. T. Prisbrey, in Shock Compression of Condensed Matter—2011, edited by M. L. Elert, W. T. Buttler, J. P. Borg, J. L. Jordan, and T. J. Vogler ( American Institute of Physics, Melville, 2012), Vol. 1426, p. 1375.
87.
87. C. H. Lu, B. A. Remington, B. R. Maddox, B. Kad, H. S. Park, S. T. Prisbrey, and M. A. Meyers, Acta Mater. 60, 6601 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.08.026
88.
88. A. J. Comley, B. R. Maddox, R. E. Rudd, S. T. Prisbrey, J. A. Hawreliak, D. A. Orlikowski, S. C. Peterson, J. H. Satcher, A. J. Elsholz, H.-S. Park, B. A. Remington, N. Bazin, J. M. Foster, P. Graham, N. Park, P. A. Rosen, S. R. Rothman, A. Higginbotham, M. Suggit, and J. S. Wark, Phys. Rev. Lett. 110, 115501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.115501
89.
89. J. R. Asay, T. Ao, T. J. Vogler, J. P. Davis, and G. T. Gray, J. Appl. Phys. 106, 073515 (2009).
http://dx.doi.org/10.1063/1.3226882
90.
90. J. L. Brown, C. S. Alexander, J. R. Asay, T. J. Vogler, D. H. Dolan, and J. L. Belof, J. Appl. Phys. 115, 043530 (2014).
http://dx.doi.org/10.1063/1.4863463
91.
91. J. R. Asay and J. Lipkin, J. Appl. Phys. 49, 4242 (1978).
http://dx.doi.org/10.1063/1.325340
92.
92. R. G. Kraus, S. T. Stewart, D. C. Swift, C. A. Bolme, R. F. Smith, S. Hamel, B. D. Hammel, D. K. Spaulding, D. G. Hicks, J. H. Eggert, and G. W. Collins, J. Geophys. Res. 117, E09009, doi:10.1029/2012JE004082 (2012).
http://dx.doi.org/10.1029/2012JE004082
93.
93. S. T. Stewart and Z. M. Leinhardt, Astrophys. J. 751, 32 (2012).
http://dx.doi.org/10.1088/0004-637X/751/1/32
94.
94. W. Benz, W. L. Slattery, and A. G. W. Cameron, Icarus 74(3), 516528 (1988).
http://dx.doi.org/10.1016/0019-1035(88)90118-2
95.
95. W. Benz, A. Anic, J. Horner, and J. A. Whitby, Sol. Syst. Rev. 132, 189202 (2007).
http://dx.doi.org/10.1007/s11214-007-9284-1
96.
96. R. M. Canup and E. Asphaug, Nature 412, 708 (2001).
http://dx.doi.org/10.1038/35089010
97.
97. R. M. Canup, Science 307, 546550 (2005).
http://dx.doi.org/10.1126/science.1106818
98.
98. T. J. Ahrens and J. D. O'Keefe, Moon 4(1–2), 214249 (1972).
http://dx.doi.org/10.1007/BF00562927
99.
99. J. H. Eggert, D. G. Hicks, P. M. Celliers, D. K. Bradley, R. S. McWilliams, R. Jeanloz, J. E. Miller, T. R. Boehly, and G. W. Collins, Nat. Phys. 6, 40 (2010).
http://dx.doi.org/10.1038/nphys1438
100.
100. M. Millot, N. Dubrovinskaia, A. Černok, S. Blaha, L. Dubrovinsky, D. G. Braun, P. M. Celliers, G. W. Collins, J. H. Eggert, and R. Jeanloz, Science 347, 418 (2015).
http://dx.doi.org/10.1126/science.1261507
101.
101. T. Guillot, Annu. Rev. Earth Planet. Sci. 33, 493530 (2005).
http://dx.doi.org/10.1146/annurev.earth.32.101802.120325
102.
102. J. M. Leinhardt and S. T. Stewart, Astrophys. J. 745, 79 (2012).
http://dx.doi.org/10.1088/0004-637X/745/1/79
103.
103. R. M. Canup, Science 338, 1052 (2012).
http://dx.doi.org/10.1126/science.1226073
104.
104. G. F. Davies, Geophys. Res. Lett. 9, 1267, doi:10.1029/GL009i011p01267 (1982).
http://dx.doi.org/10.1029/GL009i011p01267
105.
105. V. V. Shuvalov, N. A. Artemeva, and I. B. Kosarev, Int. J. Impact Eng. 23, 847 (1999).
http://dx.doi.org/10.1016/S0734-743X(99)00129-3
106.
106. V. V. Shuvalov and N. A. Artemieva, Planet. Space Sci. 50, 181 (2002).
http://dx.doi.org/10.1016/S0032-0633(01)00079-4
107.
107. N. V. Vasilyev, Planet. Space Sci. 46, 129 (1998).
http://dx.doi.org/10.1016/S0032-0633(97)00145-1
108.
108. R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun, J. R. Patterson, R. E. Rudd, J. Biener, A. E. Lazicki, A. V. Hamza, J. Wang, T. Braun, L. X. Benedict, P. M. Celliers, and G. W. Collins, Nature 511, 330 (2014).
http://dx.doi.org/10.1038/nature13526
109.
109. X. Wang, S. Scandolo, and R. Car, Phys. Rev. Lett. 95, 185701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.185701
110.
110. A. A. Correa, S. A. Bonev, and G. Galli, Proc. Natl. Acad. Sci. U. S. A. 103, 12041208 (2006).
http://dx.doi.org/10.1073/pnas.0510489103
111.
111. S. D. Rothman, J.-P. Davis, J. Maw, C. M. Robinson, K. Parker, and J. Palmer, J. Phys. D 38, 733740 (2005).
http://dx.doi.org/10.1088/0022-3727/38/5/011
112.
112. A. L. Kritcher, T. Döppner, C. Fortmann, T. Ma, O. L. Landen, R. Wallace, and S. H. Glenzer, Phys. Rev. Lett. 107, 015002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.015002
113.
113. A. L. Kritcher, T. Döppner, D. Swift, J. Hawreliak, G. Collins, J. Nilsen, B. Bachmann, E. Dewald, D. Strozzi, S. Felker, O. L. Landen, O. Jones, C. Thomas, J. Hammer, C. Keane, H. J. Lee, S. H. Glenzer, S. Rothman, D. Chapman, D. Kraus, P. Neumayer, and R. W. Falcone, High Energy Density Physics 10, 27 (2014).
http://dx.doi.org/10.1016/j.hedp.2013.11.002
114.
114. B. Svendsen and T. J. Ahrens, Geophys. J. R. Astron. Soc. 91, 667 (1987).
http://dx.doi.org/10.1111/j.1365-246X.1987.tb01664.x
115.
115. M. B. Boslough, J. Geophys. Res. 93, 64776484, doi:10.1029/JB093iB06p06477 (1988).
http://dx.doi.org/10.1029/JB093iB06p06477
116.
116. T. Döppner, A. L. Kritcher, P. Neumayer, D. Kraus, B. Bachmann, S. Burns, R. W. Falcone, S. H. Glenzer, J. Hawreliak, A. House, O. L. Landen, S. LePape, T. Ma, A. Pak, and D. Swift, Rev. Sci. Instrum. 85, 11D617 (2014).
http://dx.doi.org/10.1063/1.4890253
117.
117. G. Schaumann, S. S. Schollmeier, S. Rodriguez-Prieto, A. Blazevic, E. Brambrink, M. Geissel, S. Korostiy, P. Pirzadeh, M. Roth, F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, K. Tsigutkin, Y. Maron, N. A. Tahir, and D. H. H. Hoffmann, Laser Part. Beams 23, 503 (2005).
http://dx.doi.org/10.1017/S0263034605050688
118.
118. D. Kraus, J. Vorberger, D. O. Gericke, V. Bagnoud, A. Blazevic, W. Cayzac, A. Frank, G. Gregori, A. Ortner, A. Otten, F. Roth, G. Schaumann, D. Schumacher, K. Siegenthaler, F. Wagner, K. Wünsch, and M. Roth, Phys. Rev. Lett. 111, 255501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.255501
119.
119. G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, Phys. Rev. E 67, 026412 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.026412
120.
120. R. Jeanloz, P. M. Celliers, G. W. Collins, J. H. Eggert, K. K. M. Lee, R. Stewart McWilliams, S. Brygoo, and P. Loubeyre, Proc. Nat. Acad. Sci. U. S. A. 104, 9172 (2007).
http://dx.doi.org/10.1073/pnas.0608170104
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/9/10.1063/1.4930134
Loading
/content/aip/journal/pop/22/9/10.1063/1.4930134
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/9/10.1063/1.4930134
2015-09-17
2016-12-09

Abstract

Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/9/1.4930134.html;jsessionid=ZXvUzal-i_6rC4_Hf9TvZmyE.x-aip-live-03?itemId=/content/aip/journal/pop/22/9/10.1063/1.4930134&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/9/10.1063/1.4930134&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4930134'
Right1,Right2,Right3,