Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. W. Bieber, W. Wanner, and W. H. Matthaeus, “ Dominant 2d magnetic turbulence in the solar wind,” in Solar Wind Eight: Proceedings of the Eighth International Solar Wind Conference, Dana Point, CA, June 1995 ( American Institute of Physics, 1996), Vol. 382, p. 355.
J. J. Podesta, “ Dependence of solar-wind power spectra on the direction of the local mean magnetic field,” Astrophys. J. 698, 986 (2009).
J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, “ Anisotropy in MHD turbulence due to a mean magnetic field,” J. Plasma Phys. 29, 525547 (1983).
W. H. Matthaeus, S. Oughton, S. Ghosh, and M. Hossain, “ Scaling of anisotropy in hydromagnetic turbulence,” Phys. Rev. Lett. 81, 2056 (1998).
P. Goldreich and S. Sridhar, “ Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence,” Astrophys. J. 438, 763775 (1995).
A. N. Kolmogorov, “ The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 301305 (1941).
W.-C. Müller and R. Grappin, “ Spectral energy dynamics in magnetohydrodynamic turbulence,” Phys. Rev. Lett. 95, 114502 (2005).
B. J. Vasquez, C. W. Smith, K. Hamilton, B. T. MacBride, and R. J. Leamon, “ Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 au,” J. Geophys. Res.: Space Phys. (1978–2012) 112, A07101 (2007).
B. K. Shivamoggi, “ Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases,” Ann. Phys. 323, 12951303 (2008).
R. H. Kraichnan, “ Inertial-range spectrum of hydromagnetic turbulence,” Phys. Fluids (1958–1988) 8, 13851387 (1965).
R. J. Leamon, C. W. Smith, N. F. Ness, W. H. Matthaeus, and H. K. Wong, “ Observational constraints on the dynamics of the interplanetary magnetic field dissipation range,” J. Geophys. Res. 103, 47754787, doi:10.1029/97JA03394 (1998).
M. L. Goldstein and D. A. Roberts, “ Magnetohydrodynamic turbulence in the solar wind,” Phys. Plasmas (1994–present) 6, 41544160 (1999).
G. G. Howes, J. M. TenBarge, W. Dorland, E. Quataert, A. A. Schekochihin, R. Numata, and T. Tatsuno, “ Gyrokinetic simulations of solar wind turbulence from ion to electron scales,” Phys. Rev. Lett. 107, 035004 (2011).
E. Marsch and C.-Y. Tu, “ Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves,” J. Geophys. Res.: Space Phys. (1978–2012) 106, 83578361 (2001).
L. Chen and A. Hasegawa, “ Kinetic theory of geomagnetic pulsations 1. internal excitations by energetic particles,” J. Geophys. Res. 96, 15031512, doi:10.1029/90JA02346 (1991).
L. Chen, Z. Lin, and R. White, “ On resonant heating below the cyclotron frequency,” Phys. Plasmas (1994–present) 8, 47134716 (2001).
C. C. Chaston, J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, R. J. Strangeway, and E. J. Lund, “ Auroral ion acceleration in dispersive alfvén waves,” J. Geophys. Res.: Space Phys. (1978–2012) 109, A04205 (2004).
H. J. Beinroth and F. M. Neubauer, “ Properties of whistler mode waves between 0.3 and 1.0 au from helios observations,” J. Geophys. Res.: Space Phys. (1978–2012) 86, 77557760 (1981).
O. Stawicki, S. P. Gary, and H. Li, “ Solar wind magnetic fluctuation spectra: dispersion versus damping,” J. Geophys. Res. 106, 82738281, doi:10.1029/2000JA000446 (2001).
S. P. Gary and H. Li, “ Whistler heat flux instability at high beta,” Astrophys. J. 529, 1131 (2000).
S. Dorfman and T. A. Carter, “ Nonlinear excitation of acoustic modes by large-amplitude alfvén waves in a laboratory plasma,” Phys. Rev. Lett. 110, 195001 (2013).
L. Chen and F. Zonca, “ On nonlinear physics of shear alfvén waves,” Phys. Plasmas (1994-present) 20, 055402 (2013).
P. K. Shukla, M. Yu, H. Rahman, and K. Spatschek, “ Nonlinear convective motion in plasmas,” Phys. Rep. 105, 227328 (1984).
R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, “ Excitation of convective cells by alfven waves,” JETP Lett. 27, 340 (1978).
O. Onishchenko, O. Pokhotelov, R. Sagdeev, L. Stenflo, R. Treumann, and M. Balikhin, “ Generation of convective cells by kinetic alfvén waves in the upper ionosphere,” J. Geophys. Res.: Space Phys. (1978–2012) 109, A03306 (2004).
J. Zhao, D. Wu, M. Yu, and J. Lu, “ Convective cell generation by kinetic alfvén wave turbulence in the auroral ionosphere,” Phys. Plasmas (1994-present) 19, 062901 (2012).
A. Lin, J. Dawson, and H. Okuda, “ Thermal magnetic fluctuations and anomalous electron diffusion,” Phys. Rev. Lett. 41, 753 (1978).
S. Popel, S. Kopnin, M. Yu, J. Ma, and F. Huang, “ The effect of microscopic charged particulates in space weather,” J. Phys. D: Appl. Phys. 44, 174036 (2011).
C. Chu, M.-S. Chu, and T. Ohkawa, “ Magnetostatic mode and cross-field electron transport,” Phys. Rev. Lett. 41, 653 (1978).
V. Pavlenko and J. Weiland, “ Nonlinear magnetic islands and anomalous electron thermal conductivity,” Phys. Rev. Lett. 46, 246 (1981).
J. Zhao, D. Wu, J. Lu, L. Yang, and M. Yu, “ Generation of convective cells by kinetic alfvén waves,” New J. Phys. 13, 063043 (2011).
F. Zonca, Y. Lin, and L. Chen, “ Spontaneous excitation of convective cells by kinetic alfvén waves,” EPL 112, 65001 (2015).
Y. Lin, J. R. Johnson, and X. Wang, “ Three-dimensional mode conversion associated with kinetic alfvén waves,” Phys. Rev. Lett. 109, 125003 (2012).
L. Chen, Z. Lin, R. B. White, and F. Zonca, “ Non-linear zonal dynamics of drift and drift-alfvén turbulence in tokamak plasmas,” Nucl. Fusion 41, 747 (2001).
Z. Lin, T. S. Hahm, W. Lee, W. M. Tang, and R. B. White, “ Turbulent transport reduction by zonal flows: Massively parallel simulations,” Science 281, 18351837 (1998).
A. J. Brizard and T. S. Hahm, “ Foundations of nonlinear gyrokinetic theory,” Rev. Mod. Phys. 79, 421 (2007).
Z. Lin and L. Chen, “ A fluid–kinetic hybrid electron model for electromagnetic simulations,” Phys. Plasmas (1994–present) 8, 14471450 (2001).
W. W. Lee, “ Gyrokinetic approach in particle simulation,” Phys. Fluids (1958–1988) 26, 556562 (1983).
I. Holod, W. Zhang, Y. Xiao, and Z. Lin, “ Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry,” Phys. Plasmas (1994–present) 16, 122307 (2009).
Z. Wang, “ Gyrokinetic simulation of TAE in fusion plasmas,” Ph.D. thesis, University of California, Irvine, 2014.

Data & Media loading...


Article metrics loading...



Gyrokinetic particle simulations show that electrostatic convective cell (CC) can be generated by kinetic Alfvén waves and plays a dominant role in the nonlinear interactions underlying perpendicular spectral cascade. The CC growth rate increases linearly with the field amplitude of the pump waves and has a small but finite threshold, and decreases with the parallel wavevector. The CC growth is proportional to the perpendicular wavevector when there are two pump waves, but proportional to the square of the perpendicular wavevector when there is a single pump wave.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd