Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Keidar, “ Plasma for cancer treatment,” Plasma Sources Sci. Technol. 24, 033001 (2015).
G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, “ Applied plasma medicine,” Plasma Process. Polym. 5(6), 503533 (2008).
S. Wu, Y. Cao, and X. Lu, “ The state of the art of applications of atmospheric-pressure nonequilibrium plasma jets in dentistry,” IEEE Trans. Plasma Sci. 44(2), 134151 (2016).
K. Weltmann, R. Brandenburg, T. von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, and E. Kindel, “ Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs),” J. Phys. D. Appl. Phys. 41, 194008 (2008).
X. Lu, M. Laroussi, and V. Puech, “ On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Sources Sci. Technol. 21, 034005 (2012).
X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, “ Reactive species in non-equilibrium atmospheric-pressure. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects,” Phys. Rep. 630, 184 (2016).
Y. K. Jae, W. Yanzhang, L. Jinhua, and K. Sung-O, “ 15-Mum-sized single-cellular-level and cell-manipulatable microplasma jet in cancer therapies,” Biosens. Bioelectron. 26(2), 555559 (2010).
J. Boeuf, L. L. Yang, and L. C. Pitchford, “ Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure,” J. Phys. D: Appl. Phys. 46, 015201 (2013).
G. V. Naidis, “ Modeling of helium plasma jets emerged into ambient air: Influence of applied voltage, jet radius, and helium flow velocity on plasma jet characteristics,” J. Appl. Phys. 112, 103304 (2012).
D. Breden, K. Miki, and L. L. Raja, “ Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets,” Plasma Sources Sci. Technol. 21, 034011 (2012).
I. Jogi, R. Talviste, J. Raud, K. Piip, and P. Paris, “ The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet,” J. Phys. D.: Appl. Phys. 47, 415202 (2014).
H. Cheng, X. Lu, and D. Liu, “ The effect of tube diameter on an atmospheric-pressure micro-plasma jet,” Plasma Process. Polym. 12(12SI), 13431347 (2015).
E. Karakas, M. Koklu, and M. Laroussi, “ Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets,” J. Phys. D: Appl. Phys. 43, 155202 (2010).
J. Longfei, B. Zhenhua, N. Jinhai, F. Hongyu, and L. Dongping, “ Atmospheric-pressure microplasmas with high current density confined inside helium-filled hollow-core fibers,” Appl. Phys. Lett. 102(18), 184105 (2013).
S. Wu and X. Lu, “ Two counter-propagating He plasma plumes and ignition of a third plasma plume without external applied voltage,” Phys. Plasmas 21, 023501 (2014).
G. B. Sretenovic, I. B. Krstic, V. V. Kovacevic, B. M. Obradovic, and M. M. Kuraica, “ Spatio-temporally resolved electric field measurements in helium plasma jet,” J. Phys. D: Appl. Phys. 47, 102001 (2014).
G. B. Sretenovic, I. B. Krstic, V. V. Kovacevic, B. M. Obradovic, and M. M. Kuraica, “ Spectroscopic measurement of electric field in atmospheric-pressure plasma jet operating in bullet mode,” Appl. Phys. Lett. 99, 161502 (2011).
E. Karakas, M. A. Akman, and M. Laroussi, “ The evolution of atmospheric-pressure low-temperature plasma jets: Jet current measurements,” Plasma Sources Sci. Technol. 21, 034016 (2012).
O. Jun-Seok, J. L. Walsh, and J. W. Bradley, “ Plasma bullet current measurements in a free-stream helium capillary jet,” Plasma Sources Sci. Technol. 21(3), 034020 (2012).
N. Mericam-Bourdet, M. Laroussi, A. Begum, and E. Karakas, “ Experimental investigations of plasma bullets,” J. Phys. D: Appl. Phys. 42, 055207 (2009).
X. Lu, G. V. Naidis, M. Laroussi, and K. Ostrikov, “ Guided ionization waves: Theory and experiments,” Phys. Rep. 540(3), 123166 (2014).
S. Wu, X. Lu, D. Zou, and Y. Pan, “ Effects of H-2 on Ar plasma jet: From filamentary to diffuse discharge mode,” J. Appl. Phys. 114, 043301 (2013).
L. Ji, Z. Bi, J. Niu, X. Zhang, R. Zhou, Y. Song, J. Liu, and D. Liu, “ Effect of helium pressure and flow rate on microplasma propagation along hollow-core fibers,” J. Vac. Sci. Technol., A 33, 021302 (2015).
D. J. Jin, H. S. Uhm, and G. Cho, “ Influence of the gas-flow Reynolds number on a plasma column in a glass tube,” Phys. Plasmas 20(8), 083513 (2013).
C. Longwei, Z. Peng, S. Xingsheng, S. Jie, and M. Yuedong, “ On the mechanism of atmospheric pressure plasma plume,” Phys. Plasmas 17(8), 083502 (2010).
G. V. Naidis, “ Positive and negative streamers in air: Velocity-diameter relation,” Phys. Rev. E 79, 057401 (2009).
J. Jansky, P. Le Delliou, F. Tholin, P. Tardiveau, A. Bourdon, and S. Pasquiers, “ Experimental and numerical study of the propagation of a discharge in a capillary tube in air at atmospheric pressure,” J. Phys. D: Appl. Phys. 44, 335201 (2011).
A. A. Kulikovsky, “ Positive streamer in a weak field in air: A moving avalanche-to-streamer transition,” Phys. Rev. E 57(6), 70667074 (1998).
G. B. Sretenovic, I. B. Krstic, V. V. Kovacevic, B. M. Obradovic, and M. M. Kuraica, “ The isolated head model of the plasma bullet/streamer propagation: Electric field-velocity relation,” J. Phys. D: Appl. Phys. 47, 355201 (2014).
S. Wu, X. Lu, D. Liu, Y. Yang, Y. Pan, and K. Ostrikov, “ Photo-ionization and residual electron effects in guided streamers,” Phys. Plasmas 21, 103508 (2014).
M. D. Van Sung Mussard, O. Guaitella, and A. Rousseau, “ Propagation of plasma bullets in helium within a dielectric capillary-influence of the interaction with surfaces,” J. Phys. D: Appl. Phys. 46(30), 302001 (2013).
R. Brandenburg, M. Bogaczyk, H. Hoeft, S. Nemschokmichal, R. Tschiersch, M. Kettlitz, L. Stollenwerk, T. Hoder, R. Wild, K. Weltmann, J. Meichsner, and H. Wagner, “ Novel insights into the development of barrier discharges by advanced volume and surface diagnostics,” J. Phys. D Appl. Phys. 46, 464015 (2013).

Data & Media loading...


Article metrics loading...



In this work, the dependence of the length of plasma plume, propagation velocity, electric field in the streamer head, and propagation mode transition on the tube diameter varied in the range of 0.07–4 mm is investigated for the first time. The atmospheric-pressure helium plasma plume, ignited by a positive pulsed direct current voltage with a pulse rising time of 60 ns, is confined inside a long glass tube. First, the decreased tube diameter results in the reduction of the length of plasma plume but the growth of aspect ratio of plasma plume. Second, as the tube diameter decreases, the average velocity of the propagation of plasma plume increases first, then reaches a maximum value at tube diameter of 1 mm, and finally decreases for the tube diameter decreasing further. Third, the electric field in the streamer head, determined by the method based on Stark polarization spectroscopy of He 447 nm line, increases monotonically from 9 kV/cm to 20 kV/cm with the tube diameter decreasing from 4 mm to 0.6 mm. Finally, when the tube diameter is further reduced to 0.07 mm, high-speed photography reveals that the propagation mode of the plasma plume transits from the plasma bullet to the continuous plasma column.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd