Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Y. Park, Y. J. Hong, H. W. Lee, J. Y. Sim, and J. K. Lee, Plasma Processes Polym. 7, 281 (2010).
M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).
M. Keidar and E. Robert, Phys. Plasmas 22, 121901 (2015).
B. J. Park, D. H. Lee, J.-C. Park, I.-S. Lee, K.-Y. Lee, S. O. Hyun, M.-S. Chun, and K.-H. Chung, Phys. Plasmas 10, 4539 (2003).
X. T. Deng, J. J. Shi, and M. G. Kong, J. Appl. Phys. 101, 074701 (2007).
R. D. Boyd, A. M. Kenwright, and J. P. S. Badyal, Macromolecules 30, 5429 (1997).
A. N. Bhoj and M. J. Kushner, Plasma Sources Sci. Technol. 17, 035024 (2008).
R. Hackam and H. Akiyama, IEEE Trans. Dielectr. Electr. Insul. 7, 654 (2000).
M. A. Malik, A. Ghaffar, and S. A. Malik, Plasma Sources Sci. Technol. 10, 82 (2001).
P. Lukes, A. T. Appleton, and B. R. Locke, IEEE Trans. Ind. Appl. 40, 60 (2004).
G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym. 5, 503 (2008).
S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, IEEE Trans. Plasma Sci. 35, 1559 (2007).
E. Robert, M. Vandamme, L. Brullé, S. Lerondel, A. Le Pape, V. Sarron, D. Riès, T. Darny, S. Dozias, G. Collet, C. Kieda, and J. M. Pouvesle, Clin. Plasma Med. 1, 8 (2013).
S. Duarte, S. P. Kuo, R. M. Murata, C. Y. Chen, D. Saxena, K. J. Huang, and S. Popovic, Phys. Plasmas 18, 073503 (2011).
M. Keidar, A. Shashurin, O. Volotskova, M. A. Stepp, P. Srinivasan, A. Sandler, and B. Trink, Phys. Plasmas 20, 057101 (2013).
H. Metelmann, D. S. Nedrelow, C. Seebauer, M. Schuster, T. von Woedtke, K. Weltmann, S. Kindler, P. H. Metelmann, S. E. Finkelstein, D. D. Von Hoff, and F. Podmelle, Clin. Plasma Med. 3, 17 (2015).
G. Collet, E. Robert, A. Lenoir, M. Vandamme, T. Darny, S. Dozias, C. Kieda, and J. M. Pouvesle, Plasma Sources Sci. Technol. 23, 012005 (2014).
J. Schlegel, J. Köritzer, and V. Boxhammer, Clin. Plasma Med. 1, 2 (2013).
D. B. Graves, J. Phys. D: Appl. Phys. 45, 263001 (2012).
H. J. Ahn, K. I. Kim, N. N. Hoan, C. H. Kim, E. Moon, K. S. Choi, S. S. Yang, and J.-Soo. Lee, PLoS One 9, e86173 (2014).
W. Tian and M. J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014).
H. Jablonowski, R. Bussiahn, M. U. Hammer, K.-D. Weltmann, Th. von Woedtke, and S. Reuter, Phys. Plasmas 22, 122008 (2015).
P. Lukes, E. Dolezalova, I. Sisrova, and M. Clupek, Plasma Sources Sci. Technol. 23, 015019 (2014).
A. Tani, S. Fukui, S. Ikawa, and K. Kitano, Jpn. J. Appl. Phys., Part 1 54, 01AF01 (2015).
P. Sun, Y. Sun, H. Wu, W. Zhu, J. L. Lopez, W. Liu, J. Zhang, R. Li, and J. Fang, Appl. Phys. Lett. 98, 021501 (2011).
C. Chen, D. X. Liu, Z. C. Liu, A. J. Yang, H. L. Chen, G. Shama, and M. G. Kong, Plasma Chem Plasma Process. 34, 403 (2014).
M. Yusupov, E. C. Neyts, P. Simon, G. Berdiyorov, R. Snoeckx, A. C. T. van Duin, and A. Bogaerts, J. Phys. D: Appl. Phys. 47, 025205 (2014).
M. Jinno, Y. Ikeda, H. Motomura, Y. Kido, and S. Satoh, Arch. Biochem. Biophys. 605, 59 (2016).
Q. Zhang, J. Zhuang, T. von Woedtke, J. F. Kolb, J. Zhang, J. Fang, and K. Weltmann, Appl. Phys. Lett. 105, 104103 (2014).
E. Robert, T. Darny, S. Dozias, S. Iseni, and J. M. Pouvesle, Phys. Plasmas 22, 122007 (2015).
G. B. Sretenović, I. B. Krstić, V. V. Kovačević, B. M. Obradović, and M. M. Kuraica, J. Phys. D: Appl. Phys. 47, 102001 (2014).
A. Bourdon, T. Darny, F. Pechereau, J. Pouvesle, P. Viegas, S. Iséni, and E. Robert, Plasma Sources Sci. Technol. 25, 035002 (2016).
R. Venkatadri and R. W. Peters, Hazard. Waste Hazard. Mater. 10, 107 (1993).
N. Khosravian, A. Bogaerts, S. Huygh, M. Yusupov, and E. C. Neyts, Biointerphases 10, 029501 (2015).
A. Chatterjee and W. R. Holley, Adv. Radiat. Biol. 17, 181 (1993).
D. J. Haxton, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A 75, 012710 (2007).
W. N. Lozier, Phys. Rev. 36, 1417 (1930).
J. Fedor, P. Cicman, B. Coupier, S. Feil, M. Winkler, K. Gluch, J. Husarik, D. Jaksch, B. Farizon, N. J. Mason, P. Scheier, and T. D. Märk, J. Phys. B 39, 3935 (2006).
A. Yang, X. Wang, M. Rong, D. Liu, and F. Iza, Phys. Plasmas 18, 113503 (2011).
D. Riès, G. Dilecce, E. Robert, P. F. Ambrico, S. Dozias, and J. Pouvesle, J. Phys. D: Appl. Phys. 47, 275401 (2014).
S. Yonemori and R. Ono, J. Phys. D: Appl. Phys. 47, 125401 (2014).
S. A. Norberg, E. Johnsen, and M. J. Kushner, J. Appl. Phys. 118, 013301 (2015).
A. D. Lindsay, D. B. Graves, and S. C. Shannon, J. Phys. D: Appl. Phys. 49, 235204 (2016).
J. Zhang and C. W. Oloman, J. Appl. Electrochem. 35, 945 (2005).
G. Buettner and R. P. Mason, Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention, edited by R. G. Cutler and H. Rodriguez ( World Scientific, 2003), Vol. 1, Chap. 2, p. 27.
P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. van Swaaij, Chem. Eng. Sci. 39, 207 (1984).
P. S. Stewart, J. Bacteriol. 185, 1485 (2003).
T. Richard, see for information about the calculation of the oxygen diffusion coefficient in water (2013).
Y. Sakiyama, D. B. Graves, H.-W. Chang, T. Shimizu, and G. E. Morfill, J. Phys. D: Appl. Phys. 45, 425201 (2012).
X. Gong, S. Takagi, H. Huang, and Y. Matsumoto, Chem. Eng. Sci. 62, 1081 (2007).
I. M. Svishchev and A. Y. Plugatyr, J. Phys. Chem. B 109, 4123 (2005).
Z. Xiong, E. Robert, V. sarron, J. Pouvesle, and M. J. Kushner, J. Phys. D: Appl. Phys. 45, 275201 (2012).
D. X. Liu, J. F. Li, A. J. Yang, X. H. Wang, M. Z. Rong, and M. G. Kong, High Volt. 1, 81 (2016).
D. Ellerweg, J. Benedikt, A. von. Keudell, N. Knake, and V. Gathen, New J. Phys. 12, 013021 (2010).
D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010).
B. Pastina and J. A. LaVerne, J. Phys. Chem. A 105, 9316 (2001).
D. X. Liu, Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, and M. G. Kong, Sci. Rep. 6, 23737 (2016).

Data & Media loading...


Article metrics loading...



In this work, the mass transfer of the reactive species from the plasmas in the water layer has been investigated by means of the numerical simulation based on the one-dimensional drift-diffusion model. The depth distributions of five main reactive species, OH, O, HO, O , and HO, have been presented, when considering the dissociative electron attachment (DEA) to the water molecule by increasing electron energy in the plasmas. The present work shows that the DEA to the water molecule plays an important role in the penetration of the species OH, O, and HO. With the increase in electron energy, HO quenches after the penetration depth of a few micrometers, becoming a short-living species, but the penetration depths of O and OH increase evidently, up to a few tens micrometers, which is of significance for the application of cold atmospheric-pressure plasmas in biomedical engineering. In addition, the contribution of each dominative reaction to production or loss of OH has also been calculated and analyzed under the different electron energies because of the importance of OH in the inactivation of biomolecules and in order to have a good knowledge of the mechanisms of OH production as well as its penetration in the water layer. The present work is a first effort toward the goal of increasing the different types of the reactive species that may interact with cellular components after the mass transfer of the plasmas in the water layer, by changing the discharge parameters of the plasmas.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd