Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. Wilson III, C. Cattell, P. Kellogg, K. Goetz, K. Kersten, L. Hanson, R. MacGregor, and J. Kasper, “ Waves in interplanetary shocks: A wind/waves study,” Phys. Rev. Lett. 99, 041101 (2007).
F. Mozer, S. Bale, J. Bonnell, C. Chaston, I. Roth, and J. Wygant, “ Megavolt parallel potentials arising from double-layer streams in the earth's outer radiation belt,” Phys. Rev. Lett. 111, 235002 (2013).
F. Mozer, O. Agapitov, A. Artemyev, J. Burch, R. Ergun, B. Giles, D. Mourenas, R. Torbert, T. Phan, and I. Vasko, “ Magnetospheric multiscale satellite observations of parallel electron acceleration in magnetic field reconnection by Fermi reflection from time domain structures,” Phys. Rev. Lett. 116, 145101 (2016).
B. Lefebvre, L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, “ Debye-scale solitary structures measured in a beam-plasma laboratory experiment,” Nonlinear Processes Geophys. 18, 4147 (2011).
J. S. Pickett, L.-J. Chen, O. Santolík, S. Grimald, B. Lavraud, O. P. Verkhoglyadova, B. T. Tsurutani, B. Lefebvre, A. Fazakerley, G. S. Lakhina, S. S. Ghosh, B. Grison, P. M. E. Décréau, D. A. Gurnett, R. Torbert, N. Cornilleau-Wehrlin, I. Dandouras, and E. Lucek, “ Electrostatic solitary waves in current layers: From cluster observations during a super-substorm to beam experiments at the LAPD,” Nonlinear Processes Geophys. 16, 431442 (2009).
H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, “ Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL,” Geophys. Res. Lett. 21, 29152918, doi:10.1029/94GL01284 (1994).
J. R. Franz, P. M. Kintner, and J. S. Pickett, “ Polar observations of coherent electric field structures,” Geophys. Res. Lett. 25, 12771280, doi:10.1029/98GL50870 (1998).
F. Mottez, “ Instabilities and formation of coherent structures,” in Physics of Space: Growth Points and Problems ( Springer, 2001), pp. 5970.
H. Washimi and T. Taniuti, “ Propagation of ion-acoustic solitary waves of small amplitude,” Phys. Rev. Lett. 17, 996 (1966).
N. Dubouloz, R. Treumann, R. Pottelette, and M. Malingre, “ Turbulence generated by a gas of electron acoustic solitons,” J. Geophys. Res.: Space Phys. 98, 1741517422, doi:10.1029/93JA01611 (1993).
A. Kakad, S. Singh, R. Reddy, G. Lakhina, and S. Tagare, “ Electron acoustic solitary waves in the earth's magnetotail region,” Adv. Space Res. 43, 19451949 (2009).
N. J. Zabusky and M. D. Kruskal, “ Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240 (1965).
C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “ Method for solving the Korteweg-deVries equation,” Phys. Rev. Lett. 19, 1095 (1967).
N. Singh, “ High-Mach number electrostatic shocks in collisionless plasmas,” Indian Institute of Technology, Kanpur, 11(7), 533534 (1973).
M. Berthomier, R. Pottelette, and M. Malingre, “ Solitary waves and weak double layers in a two-electron temperature auroral plasma,” J. Geophys. Res.: Space Phys. 103, 42614270, doi:10.1029/97JA00338 (1998).
R. Sagdeev, “ Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Plasma Phys. 4, 23 (1966).
A. Kakad, S. Singh, R. Reddy, G. Lakhina, S. Tagare, and F. Verheest, “ Generation mechanism for electron acoustic solitary waves,” Phys. Plasmas 14, 052305 (2007).
G. Lakhina, A. Kakad, S. Singh, and F. Verheest, “ Ion-and electron-acoustic solitons in two-electron temperature space plasmas,” Phys. Plasmas 15, 062903 (2008).
T. K. Baluku, M. A. Hellberg, and F. Verheest, “ New light on ion acoustic solitary waves in a plasma with two-temperature electrons,” Europhys. Lett. 91, 15001 (2010).
F. Verheest, M. A. Hellberg, and I. Kourakis, “ Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions,” Phys. Plasmas 20, 082309 (2013).
S. Bame, J. Asbridge, H. Felthauser, E. Hones, and I. Strong, “ Characteristics of the plasma sheet in the earth's magnetotail,” J. Geophys. Res. 72, 113129, doi:10.1029/JZ072i001p00113 (1967).
S. Christon, “ A comparison of the mercury and earth magnetospheres: Electron measurements and substorm time scales,” Icarus 71, 448471 (1987).
C. Kletzing, J. Scudder, E. Dors, and C. Curto, “ Auroral source region: Plasma properties of the high-latitude plasma sheet,” J. Geophys. Res.: Space Phys. 108(A10), 1360, doi:10.1029/2002JA009678 (2003).
V. Formisano, P. Hedgecock, G. Moreno, F. Palmiotto, and J. Chao, “ Solar wind interaction with the earth's magnetic field: 2. Magnetohydrodynamic bow shock,” J. Geophys. Res. 78, 37313744, doi:10.1029/JA078i019p03731 (1973).
V. Pierrard and J. Lemaire, “ Fitting the AE-8 energy spectra with two maxwellian functions,” Radiat. Meas. 26, 333337 (1996).
F. Xiao, C. Shen, Y. Wang, H. Zheng, and S. Wang, “ Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit,” J. Geophys. Res.: Space Phys. 113(A05), 203, doi:10.1029/2007JA012903 (2008).
G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J. Cain, J. Fischer, L. Fisk, A. Galvin, F. Gliem, D. Hamilton et al., “ The solar wind ion composition spectrometer,” Astron. Astrophys. Suppl. Ser. 92, 267289 (1992).
M. Maksimovic, V. Pierrard, and P. Riley, “ Ulysses electron distributions fitted with kappa functions,” Geophys. Res. Lett. 24, 11511154, doi:10.1029/97GL00992 (1997).
H. Ikezi, R. Taylor, and D. Baker, “ Formation and interaction of ion-acoustic solitions,” Phys. Rev. Lett. 25, 11 (1970).
Y. Nakamura and A. Sarma, “ Observation of ion-acoustic solitary waves in a dusty plasma,” Phys. Plasmas 8, 39213926 (2001).
S. Olbert, “ Summary of experimental results from MIT detector on IMP-1,” in Physics of the Magnetosphere ( Springer, 1968), pp. 641659.
V. M. Vasyliunas, “ A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res. 73, 28392884, doi:10.1029/JA073i009p02839 (1968).
D. Summers and R. M. Thorne, “ The modified plasma dispersion function,” Phys. Fluids B 3, 18351847 (1991).
V. Pierrard and M. Lazar, “ Kappa distributions: Theory and applications in space plasmas,” Sol. Phys. 267, 153174 (2010).
N. Saini, I. Kourakis, and M. Hellberg, “ Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons,” Phys. Plasmas 16, 062903 (2009).
N. Saini and I. Kourakis, “ Electron beam–plasma interaction and ion-acoustic solitary waves in plasmas with a superthermal electron component,” Plasma Phys. Controlled Fusion 52, 075009 (2010).
G. Lakhina and S. Singh, “ Generation of weak double layers and low-frequency electrostatic waves in the solar wind,” Sol. Phys. 290, 30333049 (2015).
T. Baluku and M. Hellberg, “ Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions,” Phys. Plasmas 15, 123705 (2008).
T. Baluku, M. Hellberg, I. Kourakis, and N. Saini, “ Dust ion acoustic solitons in a plasma with kappa-distributed electrons,” Phys. Plasmas 17, 053702 (2010).
T. Baluku and M. Hellberg, “ Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons,” Phys. Plasmas 19, 012106 (2012).
A. Kakad, Y. Omura, and B. Kakad, “ Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory,” Phys. Plasmas 20, 062103 (2013).
B. Kakad, A. Kakad, and Y. Omura, “ Nonlinear evolution of ion acoustic solitary waves in space plasmas: Fluid and particle-in-cell simulations,” J. Geophys. Res.: Space Phys. 119, 55895599, doi:10.1002/2014JA019798 (2014).
A. Kakad, B. Kakad, C. Anekallu, G. Lakhina, Y. Omura, and A. Fazakerley, “ Slow electrostatic solitary waves in earth's plasma sheet boundary layer,” J. Geophys. Res.: Space Phys. 121, 44524465, doi:10.1002/2016JA022365 (2016).
K. Watanabe and T. Sato, “ High-precision MHD simulation,” in Computer Space Plasma Physics: Simulation Techniques and Software ( Terra Scientific, Tokyo, Japan, 1993), pp. 209215.
Y. Omura and J. L. Green, “ Plasma wave signatures in the magnetotail reconnection region: MHD simulation and ray tracing,” J. Geophys. Res.: Space Phys. 98, 91899199, doi:10.1029/92JA02901 (1993).
A. Lotekar, A. Kakad, and B. Kakad, “ Stability and convergence of poisson solver in a fluid plasma simulation with velocity distribution functions,” Comput. Phys. Commun. (unpublished).

Data & Media loading...


Article metrics loading...



One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd