Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000).
W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000).
J. Candy and R. Waltz, J. Comput. Phys. 186, 545 (2003).
J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003).
S. E. Parker, Y. Chen, W. Wan, B. I. Cohen, and W. M. Nevins, Phys. Plasmas 11, 2594 (2004).
A. Peeters, Y. Camenen, F. Casson, W. Hornsby, A. Snodin, D. Strintzi, and G. Szepesi, Comput. Phys. Commun. 180, 2650 (2009); 40 years of CPC: A celebratory issue focused on quality software for high performance, grid and novel computing architectures.
A. Bottino, B. Scott, S. Brunner, B. F. McMillan, T. M. Tran, T. Vernay, L. Villard, S. Jolliet, R. Hatzky, and A. G. Peeters, IEEE Trans. Plasma Sci. 38, 2129 (2010).
S. Maeyama, A. Ishizawa, T.-H. Watanabe, N. Nakajima, S. Tsuji-Iio, and H. Tsutsui, Comput. Phys. Commun. 184, 2462 (2013).
R. H. Cohen and X. Q. Xu, Contrib. Plasma Phys. 48, 212 (2008).
M. Becoulet, G. Huysmans, P. Thomas, E. Joffrin, F. Rimini, P. Monier-Garbet, A. Grosman, P. Ghendrih, V. Parail, P. Lomas, G. Matthews, H. Wilson, M. Gryaznevich, G. Counsell, A. Loarte, G. Saibene, R. Sartori, A. Leonard, P. Snyder, T. Evans, P. Gohil, R. Moyer, Y. Kamada, N. Oyama, T. Hatae, K. Kamiya, A. Degeling, Y. Martin, J. Lister, J. Rapp, C. Perez, P. Lang, A. Chankin, T. Eich, A. Sips, J. Stober, L. Horton, A. Kallenbach, W. Suttrop, S. Saarelma, S. Cowley, J. Lönnroth, M. Shimada, A. Polevoi, and G. Federici, J. Nucl. Mater. 337–339, 677 (2005).
R. Pitts, P. Andrew, G. Arnoux, T. Eich, W. Fundamenski, A. Huber, C. Silva, D. Tskhakaya, and JET EFDA Contributors, Nucl. Fusion 47, 1437 (2007).
A. W. Leonard, T. H. Osborne, M. E. Fenstermacher, R. J. Groebner, M. Groth, C. J. Lasnier, M. A. Mahdavi, T. W. Petrie, P. B. Snyder, J. G. Watkins, and L. Zeng, Phys. Plasmas 10, 1765 (2003).
R. A. Pitts, J. P. Coad, D. P. Coster, G. Federici, W. Fundamenski, J. Horacek, K. Krieger, A. Kukushkin, J. Likonen, G. F. Matthews, M. Rubel, J. D. Strachan, and JET EFDA Contributors, Plasma Phys. Controlled Fusion 47, B303 (2005).
A. W. Leonard, Phys. Plasmas 21, 090501 (2014).
G. Manfredi, S. Hirstoaga, and S. Devaux, Plasma Phys. Controlled Fusion 53, 015012 (2011).
E. Havlíčková, W. Fundamenski, D. Tskhakaya, G. Manfredi, and D. Moulton, Plasma Phys. Controlled Fusion 54, 045002 (2012).
E. L. Shi, A. H. Hakim, and G. W. Hammett, Phys. Plasmas 22, 022504 (2015).
S. Parker, R. Procassini, C. Birdsall, and B. Cohen, J. Comput. Phys. 104, 41 (1993).
M. V. Umansky, P. Popovich, T. A. Carter, B. Friedman, and W. M. Nevins, Phys. Plasmas 18, 055709 (2011).
T. Görler, “ Multiscale effects in plasma microturbulence,” Ph.D. thesis ( Universität Ulm, 2009).
T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told, J. Comput. Phys. 230, 7053 (2011).
X.-D. Liu, S. Osher, and T. Chan, J. Comput. Phys. 115, 200 (1994).
C.-W. Shu, “ Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.), Cetraro, Italy, 23–28 June, 1997, edited by A. Quarteroni ( Springer, Berlin, 1998), pp. 325432.
G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, 202 (1996).
H. Doerk and F. Jenko, Comput. Phys. Commun. 185, 1938 (2014).
D. Coulette, S. A. Hirstoaga, and G. Manfredi, Plasma Phys. Controlled Fusion 58, 085004 (2016).
J. Candy, R. E. Waltz, S. E. Parker, and Y. Chen, Phys. Plasmas 13, 074501 (2006).
D. Moulton, P. Ghendrih, W. Fundamenski, G. Manfredi, and D. Tskhakaya, Plasma Phys. Controlled Fusion 55, 085003 (2013).

Data & Media loading...


Article metrics loading...



Edge plasmas present a few challenges for gyrokinetic simulations that are absent in tokamak cores. Among them are large fluctuation amplitudes and plasma-wall interactions in the open field line region. In this paper, the widely used core turbulence code GENE, which employs a -splitting technique, is extended to simulate open systems with large electrostatic fluctuations. With inclusion and proper discretization of the parallel nonlinear term, it becomes equivalent to a full- code and the -splitting causes no fundamental difficulty in handling large fluctuations. The loss of particles to the wall is accounted for by using a logical sheath boundary, which is implemented in the context of a finite-volume method. The extended GENE code is benchmarked for the well-established one-dimensional parallel transport problem in the scrape-off layer during edge-localized modes. The parallel heat flux deposited onto the divertor target is compared with previous simulation results and shows good agreement.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd