Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. K. Phillips, R. E. Bell, L. A. Berry, P. T. Bonoli, R. W. Harvey, J. C. Hosea, E. F. Jaeger, B. P. LeBlanc, P. M. Ryan, G. Taylor, E. J. Valeo, J. B. Wilgen, J. R. Wilson, J. C. Wright, H. Yuhand, and the NSTX Team, Nucl. Fusion 49, 075015 (2009).
J. E. Menard, S. Gerhardt, M. Bell, J. Bialek, A. Brooks, J. Canik, J. Chrzanowski, M. Denault, L. Dudek, and D. A. Gates, Nucl. Fusion 52, 083015 (2012).
R. Prater, C. P. Moeller, R. I. Pinsker, M. Porkolab, O. Meneghini, and V. L. Vdovin, Nucl. Fusion 54, 083024 (2014).
R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R. J. Dumont, A. Fukuyama, R. Harvey, E. F. Jaeger, K. Indireshkumar, E. Lerche, D. McCune, C. K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS, Nucl. Fusion 52, 023023 (2012);
R. Bilato, N. Bertelli, M. Brambilla, R. Dumont, E. F. Jaeger, T. Johnson, E. Lerche, O. Sauter, D. Van Eester, and L. Villard, “ Status of the benchmark activity of ICRF full-wave codes within EUROfusion WPCD and beyond,” AIP Conf. Proc. 1689, 060001 (2015).
T. H. Stix, Waves in Plasmas ( American Institute of Physics, New York, 1992).
D. Smithe, P. Colestock, T. Kammash, and R. Kashuba, Phys. Rev. Lett. 60, 801 (1988).
M. Brambilla and T. Krücken, Nucl. Fusion 28, 1813 (1988).
E. F. Jaeger, L. A. Berry, E. D'Azevedo, D. B. Batchelor, and M. D. Carter, Phys. Plasmas 8, 1573 (2001).
P. T. Bonoli, R. Parker, S. J. Wukitch, Y. Lin, M. Porkolab, J. C. Wright, E. Edlund, T. Graves, L. Lin, J. Liptac, A. Parisot, A. E. Schmidt, V. Tang, W. Beck, R. Childs, M. Grimes, D. Gwinn, D. Johnson, J. Irby, A. Kanojia, P. Koert, S. Marazita, E. Marmar, D. Terry, R. Vieira, G. Wallace, J. Zaks, S. Bernabei, C. Brunkhorse, R. Ellis, E. Fredd, N. Greenough, J. Hosea, C. C. Kung, G. D. Loesser, J. Rushinski, G. Schilling, C. K. Phillips, J. R. Wilson, R. W. Harvey, C. L. Fiore, R. Granetz, M. Greenwald, A. E. Hubbard, I. H. Hutchinson, B. LaBombard, B. Lipschultz, J. Rice, J. A. Snipes, J. Terry, S. M. Wolfe, and Alcator C-Mod Team, Fusion Sci. Technol. 51, 401 (2007).
M. Ono, Phys. Plasmas 2, 4075 (1995).
B. D. Fried and S. D. Conte, The Plasma Dispersion Relation ( Academic Press, New York, 1961).
D. N. Smithe, Plasma Phys. Control. Fusion 31, 1105 (1989).
J. Hosea, R. E. Bell, B. P. LeBlanc, C. K. Phillips, G. Taylor, E. Valeo, J. R. Wilson, E. F. Jaeger, P. M. Ryan, J. Wilgen, H. Yuh, F. Levinton, S. Sabbagh, K. Tritz, J. Parker, P. T. Bonoli, R. Harvey, and NSTX Team, Phys. Plasmas 15, 056104 (2008).
J. M. Park, private communication.
R. J. Dumont, C. K. Phillips, and D. N. Smith, Phys. Plasmas 12, 042508 (2005).
E. F. Jaeger, L. A. Berry, S. D. Ahern, R. F. Barrett, D. B. Batchelor, M. D. Carter, E. F. D'Azevedo, R. D. Moore, R. W. Harvey, J. R. Myra, D. A. D'Ippolito, R. J. Dumont, C. K. Phillips, H. Okuda, D. N. Smithe, P. T. Bonoli, J. C. Wright, and M. Choi, Phys. Plasmas 13, 056101 (2006);
E. F. Jaeger, R. W. Harvey, L. A. Berry, J. R. Myra, R. J. Dumont, C. K. Phillips, D. N. Smithe, R. F. Barrett, D. B. Batchelor, P. T. Bonoli, M. D. Carter, E. F. D'azevedo, D. A. D'Ippolito, R. D. Moore, and J. C. Wright, Nucl. Fusion 46, S397 (2006).
R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992), USDOC NTIS Document No. DE93002962.

Data & Media loading...


Article metrics loading...



Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. In addition, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the “Stix” conductivity. However, for plasmas with non-uniform magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular ( ) and parallel ( ) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response ( function) allows resonance broadening even when  = 0, and this improves the convergence and accuracy of wave simulations. In this paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd