Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/5/10.1063/1.4949341
1.
H. Schamel, “ Theory of electron holes,” Phys. Scr. 20, 336 (1979).
http://dx.doi.org/10.1088/0031-8949/20/3-4/006
2.
S. Bujarbarua and H. Schamel, “ Theory of finite-amplitude electron and ion holes,” J. Plasma Phys. 25, 515 (1981).
http://dx.doi.org/10.1017/S0022377800026295
3.
H. Schamel, “ Electron holes, ion holes and double layers,” Phys. Rep. 140, 161 (1986).
http://dx.doi.org/10.1016/0370-1573(86)90043-8
4.
B. Eliasson and P. K. Shukla, “ Dynamics of electron holes in an electron-oxygen-ion plasma,” Phys. Rev. Lett. 93, 045001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.045001
5.
B. Eliasson and P. K. Shukla, “ Production of non-isothermal electrons and Langmuir waves because of colliding ion holes and trapping of plasmons in an ion hole,” Phys. Rev. Lett. 92, 095006 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.095006
6.
A. Luque and H. Schamel, “ Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems,” Phys. Rep. 415, 261 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.05.002
7.
B. Eliasson and P. K. Shukla, “ Formation and dynamics of coherent structures involving phase-space vortices in plasmas,” Phys. Rep. 422, 225290 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.003
8.
K. Saeki, P. Michelsen, H. L. Pécseli, and J. J. Rasmussen, “ Formation and coalescence of electron solitary holes,” Phys. Rev. Lett. 42, 501504 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.501
9.
G. Petraconi and H. S. Maciel, “ Formation of electrostatic double-layers and electron holes in a low pressure mercury plasma column,” J. Phys. D: Appl. Phys. 36, 27982805 (2003).
http://dx.doi.org/10.1088/0022-3727/36/22/005
10.
H. L. Pécseli, J. Trulsen, and R. J. Armstrong, “ Experimental observation of ion phase-space vortices,” Phys. Lett. A 81, 386390 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90097-9
11.
H. L. Pécseli, J. Trulsen, and R. J. Armstrong, “ Formation of ion phase-space vortices,” Phys. Scr. 29, 241253 (1984).
http://dx.doi.org/10.1088/0031-8949/29/3/010
12.
J. F. Drake, M. Swisdak, C. Cattell, M. A. Shay, B. N. Rogers, and A. Zeiler, “ Formation of electron holes and particle energization during magnetic reconnection,” Science 299, 873877 (2003).
http://dx.doi.org/10.1126/science.1080333
13.
C. Cattell, J. Domebeck, J. Wygant, J. F. Drake, M. Swisdak, M. L. Goldstein, W. Keith, A. Fazakerley, M. Andr, E. Lucek, and A. Balogh, “ Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations,” J. Geophys. Res. 110, A01211, doi:10.1029/2004JA010519 (2005).
http://dx.doi.org/10.1029/2004JA010519
14.
J. P. McFadden, C. W. Carlson, R. E. Ergun, F. S. Mozer, L. Muschietti, I. Roth, and E. Moebius, “ FAST observations of ion solitary waves,” J. Geophys. Res. 108, 8018, doi:10.1029/2002JA009485 (2003).
http://dx.doi.org/10.1029/2002JA009485
15.
P. K. Shukla and B. Eliasson, “ Nonlinear aspects of quantum plasma physics,” Phys. -Usp. 53, 5176 (2010).
http://dx.doi.org/10.3367/UFNe.0180.201001b.0055
16.
P. K. Shukla and B. Eliasson, “ Nonlinear collective interactions in quantum plasmas with degenerate electron fluids,” Rev. Mod. Phys. 83, 885906 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.885
17.
A. Luque, H. Schamel, and R. Fedele, “ Quantum corrected electron holes,” Phys. Lett. A 324, 185192 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.02.049
18.
D. Jovanović and R. Fedele, “ Coupling between nonlinear Langmuir waves and electron holes in quantum plasmas,” Phys. Lett. A 364, 304312 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.12.015
19.
H. Schamel, “ Stationary solitary, snoidal and sinusoidal ion acoustic waves,” Plasma Phys. 14, 905 (1972).
http://dx.doi.org/10.1088/0032-1028/14/10/002
20.
I. B. Bernstein, J. M. Greene, and M. D. Kruskal, “ Exact nonlinear plasma oscillations,” Phys. Rev. 108, 546 (1957).
http://dx.doi.org/10.1103/PhysRev.108.546
21.
C. S. Ng and A. Bhattacharjee, “ Bernstein-Greene-Kruskal modes in a three-dimensional plasma,” Phys. Rev. Lett. 95, 245004 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.245004
22.
B. Eliasson and P. K. Shukla, “ Localized kinetic structures in magnetized plasmas,” Phys. Scr. T113, 38 (2004).
http://dx.doi.org/10.1238/Physica.Topical.113a00038
23.
C. S. Ng, A. Bhattacharjee, and F. Skiff, “ Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems,” Phys. Plasmas 13, 055903 (2006).
http://dx.doi.org/10.1063/1.2186187
24.
B. Eliasson and P. K. Shukla, “ Theory for two-dimensional electron and ion Bernstein-Greene-Kruskal modes in a magnetized plasma,” J. Plasma Phys. 73(5), 715 (2007).
http://dx.doi.org/10.1017/S0022377806006167
25.
B. Eliasson and P. K. Shukla, “ Theory of relativistic electron holes in hot plasmas,” Phys. Lett. A 340(1–4), 237242 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.02.047
26.
P. K. Shukla and B. Eliasson, “ Localization of intense electromagnetic waves in a relativistically hot plasma,” Phys. Rev. Lett. 94, 065002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.065002
27.
H. Schamel, “ Analytic BGK modes and their modulational instability,” J. Plasma Phys. 13, 139 (1975).
http://dx.doi.org/10.1017/S0022377800025927
28.
J. Korn and H. Schamel, “ Electron holes and their role in the dynamics of current-carrying weakly collisional plasmas. Part 1. Immobile ions,” J. Plasma Phys. 56, 307 (1996).
http://dx.doi.org/10.1017/S0022377800019280
29.
H. Schamel, “ Particle trapping: A key requisite of structure formation and stability of Vlasov-Poisson plasmas,” Phys. Plasmas 22, 042301 (2015).
http://dx.doi.org/10.1063/1.4916774
30.
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 ( Butterworth-Heinemann, Oxford, 1980).
31.
L. D. Landau and E. M. Lifshitz, Physical Kinetics ( Pergamon, UK, 1981).
32.
H. Schamel, “ Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas,” Phys. Plasmas 7, 4831 (2000).
http://dx.doi.org/10.1063/1.1316767
33.
H. Schamel, “ Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics,” Phys. Plasmas 19, 020501 (2012).
http://dx.doi.org/10.1063/1.3682047
34.
H. A. Shah, M. N. S. Qureshi, and N. Tsintsadze, “ Effect of trapping in degenerate quantum plasmas,” Phys. Plasmas 17, 032312 (2010).
http://dx.doi.org/10.1063/1.3368831
35.
G. Manfredi, “ How to model quantum plasma,” Fields Inst. Commun. 46, 263 (2005); e-print arXiv:quant-ph/0505004.
36.
S. Son and N. J. Fisch, “ Current drive efficiency in degenerate plasma,” Phys. Rev. Lett. 95, 225002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.225002
37.
S. Chandrasekhar, “ The highly collapsed configurations of a stellar mass (Second paper),” Mon. Not. R. Astron. Soc. 95, 207 (1935).
http://dx.doi.org/10.1093/mnras/95.3.207
38.
D. Koester and C. Chanmugam, “ Physics of white dwarf stars,” Rep. Prog. Phys. 53, 837 (1990).
http://dx.doi.org/10.1088/0034-4885/53/7/001
39.
J.-M. Grießmeier, A. Luque, and H. Schamel, “ Theory of negative energy holes in current carrying plasmas,” Phys. Plasmas 9, 3816 (2002).
http://dx.doi.org/10.1063/1.1499716
40.
A. Luque, J.-M. Grießmeier, and H. Schamel, “ A systematic search for new kinetic structures in collisionless current-carrying plasmas,” Phys. Plasmas 9, 4841 (2002).
http://dx.doi.org/10.1063/1.1518013
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/5/10.1063/1.4949341
Loading
/content/aip/journal/pop/23/5/10.1063/1.4949341
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/5/10.1063/1.4949341
2016-05-19
2016-09-26

Abstract

Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a rather than a expansion, where is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of and the nonlinear dispersion relation, which describes their phase velocity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/5/1.4949341.html;jsessionid=Kfiel6jOrbrlFkFTnKckIlXk.x-aip-live-03?itemId=/content/aip/journal/pop/23/5/10.1063/1.4949341&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/5/10.1063/1.4949341&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/5/10.1063/1.4949341'
Right1,Right2,Right3,