Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Schamel, “ Theory of electron holes,” Phys. Scr. 20, 336 (1979).
S. Bujarbarua and H. Schamel, “ Theory of finite-amplitude electron and ion holes,” J. Plasma Phys. 25, 515 (1981).
H. Schamel, “ Electron holes, ion holes and double layers,” Phys. Rep. 140, 161 (1986).
B. Eliasson and P. K. Shukla, “ Dynamics of electron holes in an electron-oxygen-ion plasma,” Phys. Rev. Lett. 93, 045001 (2004).
B. Eliasson and P. K. Shukla, “ Production of non-isothermal electrons and Langmuir waves because of colliding ion holes and trapping of plasmons in an ion hole,” Phys. Rev. Lett. 92, 095006 (2004).
A. Luque and H. Schamel, “ Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems,” Phys. Rep. 415, 261 (2005).
B. Eliasson and P. K. Shukla, “ Formation and dynamics of coherent structures involving phase-space vortices in plasmas,” Phys. Rep. 422, 225290 (2006).
K. Saeki, P. Michelsen, H. L. Pécseli, and J. J. Rasmussen, “ Formation and coalescence of electron solitary holes,” Phys. Rev. Lett. 42, 501504 (1979).
G. Petraconi and H. S. Maciel, “ Formation of electrostatic double-layers and electron holes in a low pressure mercury plasma column,” J. Phys. D: Appl. Phys. 36, 27982805 (2003).
H. L. Pécseli, J. Trulsen, and R. J. Armstrong, “ Experimental observation of ion phase-space vortices,” Phys. Lett. A 81, 386390 (1981).
H. L. Pécseli, J. Trulsen, and R. J. Armstrong, “ Formation of ion phase-space vortices,” Phys. Scr. 29, 241253 (1984).
J. F. Drake, M. Swisdak, C. Cattell, M. A. Shay, B. N. Rogers, and A. Zeiler, “ Formation of electron holes and particle energization during magnetic reconnection,” Science 299, 873877 (2003).
C. Cattell, J. Domebeck, J. Wygant, J. F. Drake, M. Swisdak, M. L. Goldstein, W. Keith, A. Fazakerley, M. Andr, E. Lucek, and A. Balogh, “ Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations,” J. Geophys. Res. 110, A01211, doi:10.1029/2004JA010519 (2005).
J. P. McFadden, C. W. Carlson, R. E. Ergun, F. S. Mozer, L. Muschietti, I. Roth, and E. Moebius, “ FAST observations of ion solitary waves,” J. Geophys. Res. 108, 8018, doi:10.1029/2002JA009485 (2003).
P. K. Shukla and B. Eliasson, “ Nonlinear aspects of quantum plasma physics,” Phys. -Usp. 53, 5176 (2010).
P. K. Shukla and B. Eliasson, “ Nonlinear collective interactions in quantum plasmas with degenerate electron fluids,” Rev. Mod. Phys. 83, 885906 (2011).
A. Luque, H. Schamel, and R. Fedele, “ Quantum corrected electron holes,” Phys. Lett. A 324, 185192 (2004).
D. Jovanović and R. Fedele, “ Coupling between nonlinear Langmuir waves and electron holes in quantum plasmas,” Phys. Lett. A 364, 304312 (2007).
H. Schamel, “ Stationary solitary, snoidal and sinusoidal ion acoustic waves,” Plasma Phys. 14, 905 (1972).
I. B. Bernstein, J. M. Greene, and M. D. Kruskal, “ Exact nonlinear plasma oscillations,” Phys. Rev. 108, 546 (1957).
C. S. Ng and A. Bhattacharjee, “ Bernstein-Greene-Kruskal modes in a three-dimensional plasma,” Phys. Rev. Lett. 95, 245004 (2005).
B. Eliasson and P. K. Shukla, “ Localized kinetic structures in magnetized plasmas,” Phys. Scr. T113, 38 (2004).
C. S. Ng, A. Bhattacharjee, and F. Skiff, “ Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems,” Phys. Plasmas 13, 055903 (2006).
B. Eliasson and P. K. Shukla, “ Theory for two-dimensional electron and ion Bernstein-Greene-Kruskal modes in a magnetized plasma,” J. Plasma Phys. 73(5), 715 (2007).
B. Eliasson and P. K. Shukla, “ Theory of relativistic electron holes in hot plasmas,” Phys. Lett. A 340(1–4), 237242 (2005).
P. K. Shukla and B. Eliasson, “ Localization of intense electromagnetic waves in a relativistically hot plasma,” Phys. Rev. Lett. 94, 065002 (2005).
H. Schamel, “ Analytic BGK modes and their modulational instability,” J. Plasma Phys. 13, 139 (1975).
J. Korn and H. Schamel, “ Electron holes and their role in the dynamics of current-carrying weakly collisional plasmas. Part 1. Immobile ions,” J. Plasma Phys. 56, 307 (1996).
H. Schamel, “ Particle trapping: A key requisite of structure formation and stability of Vlasov-Poisson plasmas,” Phys. Plasmas 22, 042301 (2015).
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 ( Butterworth-Heinemann, Oxford, 1980).
L. D. Landau and E. M. Lifshitz, Physical Kinetics ( Pergamon, UK, 1981).
H. Schamel, “ Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas,” Phys. Plasmas 7, 4831 (2000).
H. Schamel, “ Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics,” Phys. Plasmas 19, 020501 (2012).
H. A. Shah, M. N. S. Qureshi, and N. Tsintsadze, “ Effect of trapping in degenerate quantum plasmas,” Phys. Plasmas 17, 032312 (2010).
G. Manfredi, “ How to model quantum plasma,” Fields Inst. Commun. 46, 263 (2005); e-print arXiv:quant-ph/0505004.
S. Son and N. J. Fisch, “ Current drive efficiency in degenerate plasma,” Phys. Rev. Lett. 95, 225002 (2005).
S. Chandrasekhar, “ The highly collapsed configurations of a stellar mass (Second paper),” Mon. Not. R. Astron. Soc. 95, 207 (1935).
D. Koester and C. Chanmugam, “ Physics of white dwarf stars,” Rep. Prog. Phys. 53, 837 (1990).
J.-M. Grießmeier, A. Luque, and H. Schamel, “ Theory of negative energy holes in current carrying plasmas,” Phys. Plasmas 9, 3816 (2002).
A. Luque, J.-M. Grießmeier, and H. Schamel, “ A systematic search for new kinetic structures in collisionless current-carrying plasmas,” Phys. Plasmas 9, 4841 (2002).

Data & Media loading...


Article metrics loading...



Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a rather than a expansion, where is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of and the nonlinear dispersion relation, which describes their phase velocity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd