Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
N. F. Ness, “ The Earth's magnetic tail,” J. Geophys. Res. 70, 29893005, doi:10.1029/JZ070i013p02989 (1965).
V. Sergeev, V. Angelopoulos, C. Carlson, and P. Sutcliffe, “ Current sheet measurements within a flapping plasma sheet,” J. Geophys. Res. 103, 91779187, doi:10.1029/97JA02093 (1998).
T. L. Zhang, W. Baumjohann, R. Nakamura, A. Balogh, and K.-H. Glassmeier, “ A wavy twisted neutral sheet observed by CLUSTER,” Geophys. Res. Lett. 29, 1899, doi:10.1029/2002GL015544 (2002).
C. Shen, X. Li, M. Dunlop, Z. X. Liu, A. Balogh, D. N. Baker, M. Hapgood, and X. Wang, “ Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements,” J. Geophys. Res. 108, 1168, doi:10.1029/2002JA009612 (2003).
V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T. L. Zhang, M. Volwerk, A. Balogh, H. Rème, J. A. Sauvaud, M. André, and B. Klecker, “ Current sheet flapping motion and structure observed by Cluster,” Geophys. Res. Lett. 30, 1327, doi:10.1029/2002GL016500 (2003).
V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T. L. Zhang, A. Balogh, P. Louarnd, J.-A. Sauvaud, and H. Rème, “ Orientation and propagation of current sheet oscillations,” Geophys. Res. Lett. 31, L05807, doi:10.1029/2003GL019346 (2004).
V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T. L. Zhang, S. Apatenkov, A. Balogh, H. Rème, and J. A. Sauvaud, “ Cluster results on the magnetotail current sheet structure and dynamics,” in Proceedings of the Cluster and Double Star Symposium–5th Anniversary of Cluster in Space ( ESA Special Publication, 2006), Vol. 598.
A. Runov, V. A. Sergeev, W. Baumjohann, R. Nakamura, S. Apatenkov, Y. Asano, M. Volwerk, Z. Vörös, T. L. Zhang, A. Petrukovich et al., “ Electric current and magnetic field geometry in flapping magnetotail current sheets,” Ann. Geophys. 23, 13911403 (2005).
A. Runov, V. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Vörös, T. L. Zhang et al., “ Local structure of the magnetotail current sheet: 2001 Cluster observations,” Ann. Geophys. 24, 247262 (2006).
A. Runov, V. Angelopoulos, V. A. Sergeev, K. H. Glassmeier, U. Auster, J. McFadden, D. Larson, and I. Mann, “ Global properties of magnetotail current sheet flapping: THEMIS perspectives,” Ann. Geophys. 27, 319328 (2009).
A. A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, and C. Carr, “ Oscillatory magnetic flux tube slippage in the plasma sheet,” Ann. Geophys. 24, 16951704 (2006).
C. Shen, Z. Rong, X. Li, M. Dunlop, Z. Liu, H. Malova, E. Lucek, and C. Carr, “ Magnetic configurations of the tilted current sheets in magnetotail,” Ann. Geophys. 26, 35253543 (2008).
B. H. Mauk, D. C. Hamilton, T. W. Hill, G. B. Hospodarsky, R. E. Johnson, C. Paranicas, E. Roussos, C. T. Russell, D. E. Shemansky, E. C. Sittler et al., “ Fundamental plasma processes in Saturn's magnetosphere,” in Saturn from Cassini-Huygens, edited by M. K. Dougherty, L. W. Esposito, and S. M. Krimigis (Springer, 2009), pp. 281331.
Z. Rong, C. Shen, A. Petrukovich, W. Wan, and Z. Liu, “ The analytic properties of the flapping current sheets in the earth magnetotail,” Planet. Space Sci. 58, 12151229 (2010).
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura et al., “ Comparative magnetotail flapping: An overview of selected events at Earth, Jupiter and Saturn,” Ann. Geophys. 31, 817833 (2013).
G. Wang, M. Volwerk, R. Nakamura, P. Boakes, T. Zhang, A. Yoshikawa, and D. Baishev, “ Flapping current sheet with superposed waves seen in space and on the ground,” J. Geophys. Res. (Space Phys.) 119, 10078 (2014).
Z. Rong, S. Barabash, G. Stenberg, Y. Futaana, T. Zhang, W. Wan, Y. Wei, X. Wang, L. Chai, and J. Zhong, “ The flapping motion of the venusian magnetotail: Venus express observations,” J. Geophys. Res. (Space Phys.) 120, 55935602 (2015).
M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, and S. Kokubun, “ Structure of plasma sheet current in distant magnetotail: Double-peaked electric current sheet,” J. Geophys. Res. 101, 2477524786, doi:10.1029/96JA02313 (1996).
I. Vasko, A. Petrukovich, A. Artemyev, R. Nakamura, and L. Zelenyi, “ Earth's distant magnetotail current sheet near and beyond lunar orbit,” J. Geophys. Res. (Space Phys.) 120, 86638680 (2015).
N. V. Erkaev, V. S. Semenov, and H. K. Biernat, “ Magnetic double-gradient instability and flapping waves in a current sheet,” Phys. Rev. Lett. 99, 235003 (2007).
N. V. Erkaev, V. S. Semenov, I. V. Kubyshkin, M. V. Kubyshkina, and H. K. Biernat, “ MHD aspect of current sheet oscillations related to magnetic field gradients,” Ann. Geophys. 27, 417425 (2009).
C. Forsyth, M. Lester, R. C. Fear, E. Lucek, I. Dandouras, A. N. Fazakerley, H. Singer, and T. K. Yeoman, “ Solar wind and substorm excitation of the wavy current sheet,” Ann. Geophys. 27, 24572474 (2009).
W. Sun, S. Fu, Q. Shi, Q. Zong, Z. Yao, T. Xiao, and G. Parks, “ THEMIS observation of a magnetotail current sheet flapping wave,” Chin. Sci. Bull. 59, 154161 (2014).
I. V. Golovchanskaya and Y. P. Maltsev, “ On the identification of plasma sheet flapping waves observed by cluster,” Geophys. Res. Lett. 32, L02102, doi:10.1029/2004GL021552 (2005).
I. V. Golovchanskaya, A. Kullen, Y. P. Maltsev, and H. Biernat, “ Ballooning instability at the plasma sheet-lobe interface and its implications for polar arc formation,” J. Geophys. Res. 111, 11216, doi:10.1029/2005JA011092 (2006).
N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “ Dispersion relation for ballooning modes and condition of their stability in the near-Earth plasma,” Geomag. Aeron. 52, 603612 (2012).
W. Daughton, “ Kinetic theory of the drift kink instability in a current sheet,” J. Geophys. Res. 103, 2942929443, doi:10.1029/1998JA900028 (1998).
W. Daughton, “ Two-fluid theory of the drift kink instability,” J. Geophys. Res. 104, 2870128707, doi:10.1029/1999JA900388 (1999).
H. Karimabadi, W. Daughton, P. L. Pritchett, and D. Krauss-Varban, “ Ion-ion kink instability in the magnetotail: 1. linear theory,” J. Geophys. Res. 108, 1400, doi:10.1029/2003JA010026 (2003).
H. Karimabadi, P. L. Pritchett, W. Daughton, and D. Krauss-Varban, “ Ion-ion kink instability in the magnetotail: 2. three-dimensional full particle and hybrid simulations and comparison with observations,” J. Geophys. Res. 108, 1401, doi:10.1029/2003JA010109 (2003).
M. I. Sitnov, M. Swisdak, J. F. Drake, P. N. Guzdar, and B. N. Rogers, “ A model of the bifurcated current sheet: 2. flapping motions,” Geophys. Res. Lett. 31, L09805, doi:10.1029/2004GL019473 (2004).
P. Ricci, G. Lapenta, and J. U. Brackbill, “ Structure of the magnetotail current: Kinetic simulation and comparison with satellite observations,” Geophys. Res. Lett. 31, L06801, doi:10.1029/2003GL019207 (2004).
L. M. Zelenyi, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, H. V. Malova, and V. Y. Popov, “ Low frequency eigenmodes of thin anisotropic current sheets and cluster observations,” Ann. Geophys. 27, 861868 (2009).
D. B. Korovinskiy, A. Divin, N. V. Erkaev, V. V. Ivanova, I. B. Ivanov, V. S. Semenov, G. Lapenta, S. Markidis, H. K. Biernat, and M. Zellinger, “ MHD modeling of the double-gradient (kink) magnetic instability,” J. Geophys. Res. 118, 11461158, doi:10.1002/jgra.50206 (2013).
D. Korovinskiy, A. Divin, N. Erkaev, V. Semenov, A. Artemyev, V. Ivanova, I. Ivanov, G. Lapenta, S. Markidis, and H. Biernat, “ The double-gradient magnetic instability: Stabilizing effect of the guide field,” Phys. Plasma 22, 012904 (2015).
J. D. Huba, J. F. Drake, and N. T. Gladd, “ Lower-hybrid-drift instability in field reversed plasmas,” Phys. Fluids 23, 552561 (1980).
L. N. Hau, R. A. Wolf, G. H. Voigt, and C. C. Wu, “ Steady state magnetic field configurations for the Earth's magnetotail,” J. Geophys. Res. 94, 13031316, doi:10.1029/JA094iA02p01303 (1989).
A. Miura, S. Ohtani, and T. Tamao, “ Ballooning instability and structure of diamagnetic hydromagnetic waves in a model magnetosphere,” J. Geophys. Res. 94, 1523115242, doi:10.1029/JA094iA11p15231 (1989).
D.-Y. Lee and R. A. Wolf, “ Is the Earth's magnetotail balloon unstable?J. Geophys. Res. 97, 1925119257, doi:10.1029/92JA00875 (1992).
W. W. Liu, “ Physics of the explosive growth phase: Ballooning instability revisited,” J. Geophys. Res. 102, 49274931, doi:10.1029/96JA03561 (1997).
P. L. Pritchett and F. V. Coroniti, “ A kinetic ballooning/interchange instability in the magnetotail,” J. Geophys. Res. 115, A06301, doi:10.1029/2009JA014752 (2010).
M. I. Sitnov and K. Schindler, “ Tearing stability of a multiscale magnetotail current sheet,” Geophys. Res. Lett. 37, L08102, doi:10.1029/2010GL042961 (2010).
J. Raeder, P. Zhu, Y. Ge, and G. Siscoe, “ Open geospace general circulation model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset,” J. Geophys. Res. 115, A00I16, doi:10.1029/2010JA015876 (2010).
D. B. Korovinskiy, V. V. Ivanova, N. V. Erkaev, V. S. Semenov, I. B. Ivanov, H. K. Biernat, and M. Zellinger, “ Kink-like mode of a double gradient instability in a compressible plasma current sheet,” Adv. Space Res. 48, 15311536 (2011).
A. G. Kulikovskii, N. V. Pogorelov, and A. Y. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems ( CRC Press, 2000).
A. Kurganov, S. Noelle, and G. Petrova, “ Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton–jacobi equations,” SIAM J. Sci. Comp. 23, 707740 (2001).
S. Gottlieb, C.-W. Shu, and E. Tadmor, “ Strong stability-preserving high-order time discretization methods,” SIAM Rev. 43, 89112 (2001).
G. Tóth, “ The constraint in shock-capturing magnetohydrodynamics codes,” J. Comput. Phys. 161, 605652 (2000).
N. Erkaev, V. Semenov, and H. Biernat, “ Current sheet oscillations in the magnetic filament approach,” Phys. Plasma 19, 062905 (2012).
N. V. Erkaev, V. S. Semenov, and H. K. Biernat, “ Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism,” Phys. Plasma 17, 060703 (2010).
N. V. Erkaev, V. S. Semenov, I. V. Kubyshkin, M. V. Kubyshkina, and H. K. Biernat, “ MHD model of the flapping motions in the magnetotail current sheet,” J. Geophys. Res. 114, A03206, doi:10.1029/2008JA013728 (2009).
T. Toichi and T. Miyazaki, “ Flapping motions of the tail plasma sheet induced by the interplanetary magnetic field variations,” Planet. Space Sci. 24, 147159 (1976).
M. H. Saito, L.-N. Hau, C.-C. Hung, Y.-T. Lai, and Y.-C. Chou, “ Spatial profile of magnetic field in the near-Earth plasma sheet prior to dipolarization by THEMIS: Feature of minimum B,” Geophys. Res. Lett. 37, L08106, doi:10.1029/2010GL042813 (2010).
D. I. Kubyshkina, D. A. Sormakov, V. A. Sergeev, V. S. Semenov, N. V. Erkaev, I. V. Kubyshkin, N. Y. Ganushkina, and S. V. Dubyagin, “ How to distinguish between kink and sausage modes in flapping oscillations?J. Geophys. Res. 119, 30023015, doi:10.1002/2013JA019477 (2014).
A. A. Petrukovich, A. V. Artemyev, R. Nakamura, E. V. Panov, and W. Baumjohann, “ Cluster observations of during growth phase magnetotail stretching intervals,” J. Geophys. Res. 118, 57205730, doi:10.1002/jgra.50550 (2013).

Data & Media loading...


Article metrics loading...



Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small up to values of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the velocity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd