Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/6/10.1063/1.4954816
1.
T. E. Evans, R. A. Moyer, K. H. Burrell, M. E. Fenstermacher, I. Joseph, A. W. Leonard, T. H. Osborne, G. D. Porter, M. J. Schaffer, P. B. Snyder, P. R. Thomas, J. G. Watkins, and W. P. West, “ Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas,” Nat. Phys. 2, 419423 (2006).
http://dx.doi.org/10.1038/nphys312
2.
Y. Liang, H. R. Koslowski, P. R. Thomas, E. Nardon, B. Alper, P. Andrew, Y. Andrew, G. Arnoux, Y. Baranov, M. Becoulet, M. Beurskens, T. Biewer, M. Bigi, K. Crombe, E. De La Luna, P. de Vries, W. Fundamenski, S. Gerasimov, C. Giroud, M. P. Gryaznevich, N. Hawkes, S. Hotchin, D. Howell, S. Jachmich, V. Kiptily, L. Moreira, V. Parail, S. D. Pinches, E. Rachlew, and O. Zimmermann, “ Active Control of Type-I Edge-Localized Modes with n = 1 Perturbation Fields in the JET Tokamak,” Phys. Rev. Lett. 98, 265004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.265004
3.
W. Suttrop, T. Eich, J. C. Fuchs, S. Günter, A. Janzer, A. Herrmann, A. Kallenbach, P. T. Lang, T. Lunt, M. Maraschek, R. M. McDermott, A. Mlynek, T. Pütterich, M. Rott, T. Vierle, E. Wolfrum, Q. Yu, I. Zammuto, H. Zohm, and ASDEX Upgrade Team, “ first observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX upgrade,” Phys. Rev. Lett. 106, 225004 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.225004
4.
A. Loarte, G. Huijsmans, S. Futatani, L. R. Baylor, T. E. Evans, D. M. Orlov, O. Schmitz, M. Becoulet, P. Cahyna, Y. Gribov, A. Kavin, A. Sashala Naik, D. J. Campbell, T. Casper, E. Daly, H. Frerichs, A. Kischner, R. Laengner, S. Lisgo, R. A. Pitts, G. Saibene, and A. Wingen, “ Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation,” Nucl. Fusion 54, 033007 (2014).
http://dx.doi.org/10.1088/0029-5515/54/3/033007
5.
T. E. Evans, “ Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices,” Plasma Phys. Controlled Fusion 57, 123001 (2015).
http://dx.doi.org/10.1088/0741-3335/57/12/123001
6.
J. M. Canik, R. Maingi, T. E. Evans, R. E. Bell, S. P. Gerhardt, B. P. LeBlanc, J. Manickam, J. E. Menard, T. H. Osborne, J.-K. Park, S. F. Paul, P. B. Snyder, S. A. Sabbagh, H. W. Kugel, E. A. Unterberg, and the NSTX Team, “ On demand triggering of edge localized instabilities using external nonaxisymmetric magnetic perturbations in toroidal plasmas,” Phys. Rev. Lett. 104, 045001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.045001
7.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ( Applied Mathematical Science, 1983).
8.
T. E. Evans, R. K. W. Roeder, J. A. Carter, and B. I. Rapoport, “ Homoclinic tangles, bifurcations and edge stochasticity in diverted tokamaks,” Contrib. Plasma Phys. 44, 235240 (2004).
http://dx.doi.org/10.1002/ctpp.200410034
9.
T. E. Evans, R. K. W. Roeder, J. A. Carter, B. I. Rapoport, M. E. Fenstermacher, and C. J. Lasnier, “ Experimental signatures of homoclinic tangles in poloidally diverted tokamaks,” J. Phys. Conf. Ser. 7, 174 (2005).
http://dx.doi.org/10.1088/1742-6596/7/1/015
10.
J-W. Ahn, R. Maingi, J. M. Canik, A. G. McLean, J. D. Lore, J.-K. Park, V. A. Soukhanovskii, T. K. Gray, and A. L. Roquemore, “ Effect of nonaxisymmetric magnetic perturbations on divertor heat and particle flux profiles in National Spherical Torus Experiment,” Phys. Plasmas 18, 056108 (2011).
http://dx.doi.org/10.1063/1.3574522
11.
Y. Feng, F. Sardei, J. Kisslinger, P. Grigull, K. McCormick, and D. Reiter, “ 3D edge modeling and island divertor physics,” Contrib. Plasma Phys. 44(1–3), 5769 (2004).
http://dx.doi.org/10.1002/ctpp.200410009
12.
Y. Feng, H. Frerichs, M. Kobayashi, A. Bader, F. Effenberg, D. Harting, H. Hoelbe, J. Huang, G. Kawamura, J. D. Lore, T. Lunt, D. Reiter, O. Schmitz, and D. Sharma, “ Recent improvements in the EMC3-eirene code,” Contrib. Plasma Phys. 54(4–6), 426431 (2014).
http://dx.doi.org/10.1002/ctpp.201410092
13.
H. Frerichs, D. Reiter, Y. Feng, and D. Harting, “ Block-structured grids in Lagrangian 3D edge plasma transport simulations,” Comput. Phys. Commun. 181, 6170 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.08.016
14.
T. Lunt, Y. Feng, M. Bernet, A. Herrmann, P. de Marne, R. McDermott, H. W. Müller, S. Potzel, T. Pütterich, S. Rathgeber, W. Suttrop, E. Viezzer, E. Wolfrum, M. Willensdorfer, and the ASDEX Upgrade team, “ First EMC3-Eirene simulations of the edge magnetic perturbations at ASDEX upgrade compared with the experiment,” Nucl. Fusion 52, 054013 (2012).
http://dx.doi.org/10.1088/0029-5515/52/5/054013
15.
J. D. Lore, J. M. Canik, Y. Feng, J.-W. Ahn, R. Maingi, and V. Soukhanovskii, “ Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX,” Nucl. Fusion 52, 054012 (2012).
http://dx.doi.org/10.1088/0029-5515/52/5/054012
16.
O. Schmitz, M. Becoulet, P. Cahyna, T. E. Evans, Y. Feng, H. Frerichs, A. Loarte, R. A. Pitts, D. Reiser, M. E. Fenstermacher, D. Harting, A. Kirschner, A. Kukushkin, T. Lunt, G. Saibene, D. Reiter, U. Samm, and S. Wiesen, “ Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER,” Nucl. Fusion 56, 066008 (2016).
http://dx.doi.org/10.1088/0029-5515/56/6/066008
17.
W. Engelhardt and W. Feneberg, “ Influence of an ergodic magnetic limiter on the impurity content in a tokamak,” J. Nucl. Mater. 76–77, 518520 (1978).
http://dx.doi.org/10.1016/0022-3115(78)90198-8
18.
W. Feneberg and G. H. Wolf, “ A helical magnetic limiter for boundary layer control in large tokamaks,” Nucl. Fusion 21, 669675 (1981).
http://dx.doi.org/10.1088/0029-5515/21/6/006
19.
D. D. Ryutov, “ Geometrical properties of as ‘snowflake’ divertor,” Phys. Plasmas 14, 064502 (2007).
http://dx.doi.org/10.1063/1.2738399
20.
M. Kotschenreuther, P. M. Valanju, S. M. Mahajan, and J. C. Wiley, “ On heat load, novel divertors, and fusion reactors,” Phys. Plasmas 14, 072502 (2007).
http://dx.doi.org/10.1063/1.2739422
21.
P. M. Valanju, M. Kotschenreuther, S. M. Mahajan, and J. Canik, “ Super-X divertors and high power density fusion devices,” Phys. Plasmas 16, 056110 (2009).
http://dx.doi.org/10.1063/1.3110984
22.
D. D. Ryutov, R. H. Cohen, T. D. Rognlien, and M. V. Umansky, “ The magnetic field structure of a snowflake divertor,” Phys. Plasmas 15, 092501 (2008).
http://dx.doi.org/10.1063/1.2967900
23.
D. D. Ryutov, M. A. Makowski, and M. V. Umansky, “ Local properties of the magnetic field in a snowflake divertor,” Plasma Phys. Controlled Fusion 52, 105001 (2010).
http://dx.doi.org/10.1088/0741-3335/52/10/105001
24.
M. Kotschenreuther, P. Valanju, B. Covele, and S. Mahajan, “ Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake,” Phys. Plasmas 20, 102507 (2013).
http://dx.doi.org/10.1063/1.4824735
25.
D. D. Ryutov, R. H. Cohen, T. D. Rognlien, V. A. Soukhanovskii, and M. V. Umansky, “ Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake,” Phys. Plasmas 21, 054701 (2014).
http://dx.doi.org/10.1063/1.4873404
26.
M. Kotschenreuther, P. Valanju, B. Covele, and S. Mahajan, “ Response to ‘Comment on Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake,’” Phys. Plasmas 21, 054702 (2014).
http://dx.doi.org/10.1063/1.4873405
27.
J. E. Menard, S. Gerhardt, M. Bell, J. Bialek, A. Brooks, J. Canik, J. Chrzanowski, M. Denault, L. Dudek, D. A. Gates, N. Gorelenkov, W. Guttenfelder, R. Hatcher, J. Hosea, R. Kaita, S. Kaye, C. Kessel, E. Kolemen, H. Kugel, R. Maingi, M. Mardenfeld, D. Mueller, B. Nelson, C. Neumeyer, M. Ono, E. Perry, R. Ramakrishnan, R. Raman, Y. Ren, S. Sabbagh, M. Smith, V. Soukhanovskii, T. Stevenson, R. Strykowsky, D. Stutman, G. Taylor, P. Titus, K. Tresemer, K. Tritz, M. Viola, M. Williams, R. Woolley, H. Yuh, H. Zhang, Y. Zhai, A. Zolfaghari, and the NSTX Team, “ Overview of the physics and engineering design of NSTX upgrade,” Nucl. Fusion 52, 083015 (2012).
http://dx.doi.org/10.1088/0029-5515/52/8/083015
28.
T. E. Evans, D. M. Orlov, A. Wingen, W. Wu, A. Loarte, T. A. Casper, O. Schmitz, G. Saibene, M. J. Schaffer, and E. Daly, “ 3D vacuum magnetic field modelling of the ITER ELM control coil during standard operating scenarios,” Nucl. Fusion 53, 093029 (2013).
http://dx.doi.org/10.1088/0029-5515/53/9/093029
29.
O. Schmitz, T. E. Evans, M. E. Fenstermacher, M. J. Lanctot, C. L. Lasnier, S. Mordijck, R. A. Moyer, H. Reimerdes, and the DIII-D Team, “ Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields,” Nucl. Fusion 54(1), 012001 (2014).
http://dx.doi.org/10.1088/0029-5515/54/1/012001
30.
O. Schmitz, T. E. Evans, M. E. Fenstermacher, H. Frerichs, M. W. Jakubowski, M. J. Schaffer, A. Wingen, W. P. West, N. H. Brooks, K. H. Burrell, J. S. deGrassie, Y. Feng, K. H. Finken, P. Gohil, M. Groth, I. Joseph, C. J. Lasnier, M. Lehnen, A. W. Leonard, S. Mordijck, R. A. Moyer, A. Nicolai, T. H. Osborne, D. Reiter, U. Samm, K. H. Spatschek, H. Stoschus, B. Unterberg, E. A. Unterberg, J. G. Watkins, R. Wolf, and the DIII-D and TEXTOR Teams, “ Aspects of three dimensional transport for ELM control experiments in ITER-similar shape plasmas at low collisionality in DIII-D,” Plasma Phys. Controlled Fusion 50, 124029 (2008).
http://dx.doi.org/10.1088/0741-3335/50/12/124029
31.
J.-K. Park, A. H. Boozer, J. E. Menard, A. M. Garofalo, M. J. Schaffer, R. J. Hawryluk, S. M. Kaye, S. P. Gerhardt, S. A. Sabbagh, and NSTX Team, “ Importance of plasma response to nonaxisymmetric perturbations in tokamaks,” Phys. Plasmas 16, 056115 (2009).
http://dx.doi.org/10.1063/1.3122862
32.
P. Cahyna and E. Nardon, “ Resonant magnetic perturbations and divertor footprints in poloidally diverted tokamaks,” e-print arXiv:1005.3663 [physics.plasm-ph].
33.
P. Cahyna, M. Peterka, E. Nardon, H. Frerichs, and R. Panek, “ Method for comparison of tokamak divertor strike point data with magnetic perturbation models,” Nucl. Fusion 54, 064002 (2014).
http://dx.doi.org/10.1088/0029-5515/54/6/064002
34.
Y. Feng, F. Sardei, and J. Kisslinger, “ A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport,” Phys. Plasmas 12, 052505 (2005).
http://dx.doi.org/10.1063/1.1888959
35.
H. Frerichs, D. Reiter, O. Schmitz, T. E. Evans, and Y. Feng, “ Three-dimensional edge transport simulations for DIII-D plasmas with resonant magnetic perturbations,” Nucl. Fusion 50, 034004 (2010).
http://dx.doi.org/10.1088/0029-5515/50/3/034004
36.
H. Frerichs and D. Reiter, “ Stability and control of iterated non-linear transport solvers for fusion edge plasmas,” Comput. Phys. Commun. 188, 82 (2015).
http://dx.doi.org/10.1016/j.cpc.2014.11.007
37.
T. Lunt, G. P. Canal, Y. Feng, H. Reimerdes, B. P. Duval, B. Labit, W. A. J. Vijvers, D. Coster, K. Lackner, and M. Wischmeier, “ First EMC3-Eirene simulations of the TCV snowflake divertor,” Plasma Fusion Res. 56, 035009 (2014).
http://dx.doi.org/10.1088/0741-3335/56/3/035009
38.
H. Frerichs, O. Schmitz, T. Evans, Y. Feng, and D. Reiter, “ The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D,” Phys. Plasmas 22, 072508 (2015).
http://dx.doi.org/10.1063/1.4926524
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/6/10.1063/1.4954816
Loading
/content/aip/journal/pop/23/6/10.1063/1.4954816
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/6/10.1063/1.4954816
2016-06-29
2016-09-26

Abstract

The control of divertor heat loads—both steady state and transient—remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called “advanced divertors” which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts—magnetic perturbations and advanced divertors—will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/6/1.4954816.html;jsessionid=7-_6_K5rrxVk7FdxjVzPbtnE.x-aip-live-02?itemId=/content/aip/journal/pop/23/6/10.1063/1.4954816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/6/10.1063/1.4954816&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/6/10.1063/1.4954816'
Right1,Right2,Right3,