Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/7/10.1063/1.4956443
1.
M. Khodachenko, T. Arber, H. O. Rucker, and A. Hanslmeier, Astron. Astrophys. 422, 1073 (2004).
http://dx.doi.org/10.1051/0004-6361:20034207
2.
B. Pandey and M. Wardle, MNRAS 385, 2269 (2008).
http://dx.doi.org/10.1111/j.1365-2966.2008.12998.x
3.
A. J. Russell and L. Fletcher, Astrophys. J. 765, 81 (2013).
http://dx.doi.org/10.1088/0004-637X/765/2/81
4.
R. Soler, J. Ballester, and T. Zaqarashvili, Astron. Astrophys. 573, A79 (2015).
http://dx.doi.org/10.1051/0004-6361/201423930
5.
T. Arber, M. Haynes, and J. E. Leake, Astrophys. J. 666, 541 (2007).
http://dx.doi.org/10.1086/520046
6.
E. G. Zweibel, E. Lawrence, J. Yoo, H. Ji, M. Yamada, and L. M. Malyshkin, Phys. Plasmas 18, 111211 (2011).
http://dx.doi.org/10.1063/1.3656960
7.
J. E. Leake, V. S. Lukin, M. G. Linton, and E. T. Meier, Astrophys. J. 760, 109 (2012).
http://dx.doi.org/10.1088/0004-637X/760/2/109
8.
R. Hazeltine, M. Calvin, P. Valanju, and E. Solano, Nucl. Fusion 32, 3 (1992).
http://dx.doi.org/10.1088/0029-5515/32/1/I01
9.
P. Helander, S. Krasheninnikov, and P. Catto, Phys. Plasmas 1, 3174 (1994).
http://dx.doi.org/10.1063/1.870470
10.
N. Bisai, R. Jha, and P. Kaw, Phys. Plasmas 22, 022517 (2015).
http://dx.doi.org/10.1063/1.4913429
11.
T. Zaqarashvili, M. Khodachenko, and H. Rucker, Astron. Astrophys. 529, A82 (2011).
http://dx.doi.org/10.1051/0004-6361/201016326
12.
E. Khomenko, M. Collados, A. Diaz, and N. Vitas, Phys. Plasmas 21, 092901 (2014).
http://dx.doi.org/10.1063/1.4894106
13.
E. Meier and U. Shumlak, Phys. Plasmas 19, 072508 (2012).
http://dx.doi.org/10.1063/1.4736975
14.
H. Alfvén, Stockholms Observ. Ann. 14, 2 (1942), see http://adsabs.harvard.edu/abs/1942StoAn..14....2A.
15.
H. Alfvén, Rev. Mod. Phys. 32(4), 710 (1960).
http://dx.doi.org/10.1103/RevModPhys.32.710
16.
D. A. Diver, L. Fletcher, and H. E. Potts, Sol. Phys. 227(2), 207217 (2005).
http://dx.doi.org/10.1007/s11207-005-2447-x
17.
C. R. Stark, C. Helling, D. A. Diver, and P. B. Rimmer, Astrophys. J. 776, 11 (2013).
http://dx.doi.org/10.1088/0004-637X/776/1/11
18.
U. V. Fahleson, Phys. Fluids 4, 123 (1961).
http://dx.doi.org/10.1063/1.1706172
19.
B. Angerth, L. Block, U. Fahleson, and K. Soop, Technical Report, Royal Institute of Tech., Stockholm (1962).
20.
B. Lehnert, J. Bergström, and S. Holmberg, Nucl. Fusion 6, 231 (1966).
http://dx.doi.org/10.1088/0029-5515/6/3/011
21.
L. Danielsson, Astrophys. Space Sci. 24, 459 (1973).
http://dx.doi.org/10.1007/BF02637168
22.
J. Sherman, Astrophys. Space Sci. 24, 487 (1973).
http://dx.doi.org/10.1007/BF02637169
23.
N. Brenning and D. Lundin, Phys. Plasmas 19, 093505 (2012).
http://dx.doi.org/10.1063/1.4752073
24.
V. Formisano, A. Galeev, and R. Sagdeev, Planet. Space Sci. 30, 491 (1982).
http://dx.doi.org/10.1016/0032-0633(82)90059-9
25.
G. Haerendel, Geophys. Res. Lett. 13, 255, doi:10.1029/GL013i003p00255 (1986).
http://dx.doi.org/10.1029/GL013i003p00255
26.
M. K. Wallis, in Cosmic Plasma Physics ( Springer, 1972), pp. 137140.
27.
P. Cloutier, R. Daniell, Jr., A. Dessler, and T. Hill, Astrophys. Space Sci. 55, 93 (1978).
http://dx.doi.org/10.1007/BF00642582
28.
E. Petelski, H. Fahr, H. Ripken, N. Brenning, and I. Axnas, Astron. Astrophys. 87, 20 (1980), see http://adsabs.harvard.edu/abs/1980A%26A....87...20P.
29.
J. Geiss and P. Bochsler, Isotopic Ratios Sol. Syst. 1, 213 (1985), see http://adsabs.harvard.edu/abs/1985irss.rept..213G.
30.
L. Diver, H. E. Potts, and L. F. A. Teodoro, N. J. Phys. 8(11), 265 (2006).
http://dx.doi.org/10.1088/1367-2630/8/11/265
31.
C. S. MacLachlan, D. A. Diver, and H. E. Potts, New. J. Phys. 11, 063001 (2009).
http://dx.doi.org/10.1088/1367-2630/11/6/063001
32.
B. Lehnert, Phys. Fluids 10, 2216 (1967).
http://dx.doi.org/10.1063/1.1762017
33.
M. Raadu, J. Phys. D: Appl. Physics 11, 363 (1978).
http://dx.doi.org/10.1088/0022-3727/11/3/023
34.
S. T. Lai, Rev. Geophys. 39, 471, doi:10.1029/2000RG000087 (2001).
http://dx.doi.org/10.1029/2000RG000087
35.
N. Brenning, Space Sci. Rev. 59, 209 (1992).
http://dx.doi.org/10.1007/BF00242088
36.
N. Brenning, Plasma Phys. 23, 967 (1981).
http://dx.doi.org/10.1088/0032-1028/23/10/007
37.
I. D. Kaganovich, E. Startsev, and R. C. Davidson, New. J. Phys. 8, 278 (2006).
http://dx.doi.org/10.1088/1367-2630/8/11/278
38.
L. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1 (1966).
http://dx.doi.org/10.1103/RevModPhys.38.1
39.
A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential Equations ( John Wiley, 1980).
40.
M. Saha, Nature 105, 232 (1920).
http://dx.doi.org/10.1038/105232b0
41.
J. P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas ( Cambridge University Press, 2004).
42.
L. Danielsson and N. Brenning, Phys. Fluids 18, 661 (1975).
http://dx.doi.org/10.1063/1.861215
43.
L. B. Rubio, Astrophys. J. 700, 284 (2009).
http://dx.doi.org/10.1088/0004-637X/700/1/284
44.
N. Vitas, C. Fischer, A. Vögler, and C. Keller, Astron. Astrophys. 532, A110 (2011).
http://dx.doi.org/10.1051/0004-6361/201015773
45.
T. E. Berger, Astrophys. J. 463, 365 (1996).
http://dx.doi.org/10.1086/177250
46.
S. K. Solanki, Astron. Astrophys. Rev. 11, 153286 (2003).
http://dx.doi.org/10.1007/s00159-003-0018-4
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/7/10.1063/1.4956443
Loading
/content/aip/journal/pop/23/7/10.1063/1.4956443
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/7/10.1063/1.4956443
2016-07-18
2016-12-07

Abstract

A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/7/1.4956443.html;jsessionid=SKuYKNEkXjK9Rhn1NvzXPKXU.x-aip-live-03?itemId=/content/aip/journal/pop/23/7/10.1063/1.4956443&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/7/10.1063/1.4956443&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/7/10.1063/1.4956443'
Right1,Right2,Right3,