Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Xiao, Z. Song, Y. Deng, and C. Chen, Phys. Plasmas 21, 093108 (2014).
J. Zhang, Z. Jin, J. Yang, H. Zhong, T. Shu, J. Zhang, B. Qian, C. Yuan, Z. Li, Y. Fan, S. Zhou, and L. Xu, IEEE Trans. Plasma Sci. 39, 1438 (2011).
J. Sun, P. Wu, S. Huo, W. Tan, H. Shao, C. Chen, and G. Liu, IEEE Trans. Plasma Sci. 42, 2179 (2014).
G. Liu, J. Sun, H. Shao, C. Chen, and X. Zhang, J. Phys. D: Appl. Phys. 42, 125204 (2009).
R. Xiao, Y. Zhang, J. Li, Z. Song, and J. Sun, Phys. Plasmas 23, 023108 (2016).
S. Y. Belomyttesv, V. V. Rostov, I. V. Romanchenko, S. A. Shunailov, M. D. Kolomiets, G. A. Mesyats, K. A. Sharypov, V. G. Shpak, M. R. Ulmaskulov, and M. I. Yalandin, J. Appl. Phys. 119, 023304 (2016).
J. Wang, Z. Chen, Y. Wang, D. Zhang, C. Liu, Y. Li, H. Wang, H. Qiao, M. Fu, and Y. Yuan, Phys. Plasmas 17, 073107 (2010).
J. Wang, Y. Wang, and D. Zhang, IEEE Trans. Plasma Sci. 34, 681 (2006).
J. Wang, D. Zhang, C. Liu, Y. Li, Y. Wang, H. Wang, H. Qiao, and X. Li, Phys. Plasmas 16, 033108 (2009).
Y. Wang, J. Wang, Z. Chen, G. Cheng, and P. Wang, Comput. Phys. Commun. 205, 1 (2016).
K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
J. You, H. Wang, J. Zhang, W. Cui, and T. Cui, IEEE Trans. Plasma Sci. 41, 3099 (2013).
T. Xiao and Q. Liu, IEEE Trans. Antennas Propag. 56, 765 (2008).
C. S. Meierbachtol, A. D. Greenwood, J. P. Verboncoeur, and B. Shanker, IEEE Trans. Plasma Sci. 43, 3778 (2015).
Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005).
J. J. Watrous, J. W. Lugisland, and G. E. Sasser III, Phys. Plasmas 8, 289 (2001).
J. J. Coogan and E. A. Rose, App. Phys. Lett. 60, 2062 (1992).
D. Zhang, J. Zhang, H. Zhong, Z. Jin, and J. Ju, Phys. Plasmas 21, 093102 (2014).

Data & Media loading...


Article metrics loading...



Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission model are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd