Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, “ Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106, 37153720, doi:10.1029/1999JA900449 (2001).
D. Biskamp, “ Magnetic reconnection via current sheets,” Phys. Fluids 29, 15201531 (1986).
N. F. Loureiro, S. C. Cowley, W. D. Dorland, M. G. Haines, and A. A. Schekochihin, “ X-point collapse and saturation in the nonlinear tearing mode reconnection,” Phys. Rev. Lett. 95, 235003 (2005).
N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, “ Instability of current sheets and formation of plasmoid chains,” Phys. Plasmas 14, 100703 (2007).
R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley, “ Formation of plasmoid chains in magnetic reconnection,” Phys. Rev. Lett. 103, 105004 (2009);
R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley, e-print arXiv:0903.0542 [astro-ph.SR].
G. Lapenta, “ Self-feeding turbulent magnetic reconnection on macroscopic scales,” Phys. Rev. Lett. 100, 235001 (2008);
G. Lapenta, e-print arXiv:0805.0426 [physics.plasm-ph].
A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, “ Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability,” Phys. Plasmas 16, 112102 (2009);
A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, e-print arXiv:0906.5599 [physics.plasm-ph].
N. F. Loureiro, R. Samtaney, A. A. Schekochihin, and D. A. Uzdensky, “ Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas,” Phys. Plasmas 19, 042303 (2012);
N. F. Loureiro, R. Samtaney, A. A. Schekochihin, and D. A. Uzdensky, e-print arXiv:1108.4040 [astro-ph.SR].
T. Shibayama, K. Kusano, T. Miyoshi, T. Nakabou, and G. Vekstein, “ Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks,” Phys. Plasmas 22, 100706 (2015).
H. Baty, E. R. Priest, and T. G. Forbes, “ Petschek-like reconnection with uniform resistivity,” Phys. Plasmas 16, 060701 (2009).
F. Porcelli, “ Viscous resistive magnetic reconnection,” Phys. Fluids 30, 17341742 (1987).
A. Tenerani, A. F. Rappazzo, M. Velli, and F. Pucci, “ The tearing mode instability of thin current sheets: the transition to fast reconnection in the presence of viscosity,” Astrophys. J. 801, 145 (2015);
A. Tenerani, A. F. Rappazzo, M. Velli, and F. Pucci, e-print arXiv:1412.0047 [physics.plasm-ph].
L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. ( Interscience, 1962).
A. A. Schekochihin, S. C. Cowley, S. F. Taylor, J. L. Maron, and J. C. McWilliams, “ Simulations of the small-scale turbulent dynamo,” Astrophys. J. 612, 276307 (2004).
G. Lesur and P.-Y. Longaretti, “ Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport,” MNRAS 378, 14711480 (2007);
G. Lesur and P.-Y. Longaretti, e-print arXiv:0704.2943.
A. Brandenburg, “ Magnetic Prandtl number dependence of the kinetic-to-magnetic dissipation ratio,” Astrophys. J. 791, 12 (2014);
A. Brandenburg, e-print arXiv:1404.6964 [astro-ph.SR].
T. Minoshima, S. Hirose, and T. Sano, “ Dependence of the saturation level of magnetorotational instability on gas pressure and magnetic Prandtl number,” Astrophys. J. 808, 5470 (2015);
T. Minoshima, S. Hirose, and T. Sano, e-print arXiv:1506.03524 [astro-ph.SR].
M. A. Shay, J. F. Drake, R. E. Denton, and D. Biskamp, “ Structure of the dissipation region during collisionless magnetic reconnection,” J. Geophys. Res. 103, 91659176, doi:10.1029/97JA03528 (1998).
M. Hesse, J. Birn, and M. Kuznetsova, “ Collisionless magnetic reconnection: Electron processes and transport modeling,” J. Geophys. Res. 106, 37213736, doi:10.1029/1999JA001002 (2001).
M. Hoshino, T. Mukai, T. Terasawa, and I. Shinohara, “ Suprathermal electron acceleration in magnetic reconnection,” J. Geophys. Res. 106, 2597925998, doi:10.1029/2001JA900052 (2001).
K. Fujimoto and S. Machida, “ A generation mechanism of electrostatic waves and subsequent electron heating in the plasma sheet-lobe boundary region during magnetic reconnection,” J. Geophys. Res. 111, A09216, doi:10.1029/2005JA011542 (2006).
S. Imada, R. Nakamura, P. W. Daly, M. Hoshino, W. Baumjohann, S. Mühlbachler, A. Balogh, and H. RèMe, “ Energetic electron acceleration in the downstream reconnection outflow region,” J. Geophys. Res. 112, A03202, doi:10.1029/2006JA011847 (2007).
T. Yokoyama and K. Shibata, “ Magnetic reconnection coupled with heat conduction,” Astrophys. J. 474, L61L64 (1997).
P. F. Chen, C. Fang, Y. H. Tang, and M. D. Ding, “ Simulation of magnetic reconnection with heat conduction,” Astrophys. J. 513, 516523 (1999).
L. Ni, I. I. Roussev, J. Lin, and U. Ziegler, “ Impact of temperature-dependent resistivity and thermal conduction on plasmoid instabilities in current sheets in the solar corona,” Astrophys. J. 758, 20 (2012);
L. Ni, I. I. Roussev, J. Lin, and U. Ziegler, e-print arXiv:1308.2476 [astro-ph.SR].
M. Hesse, J. Birn, and S. Zenitani, “ Magnetic reconnection in a compressible MHD plasma,” Phys. Plasmas 18, 042104 (2011).
J. Birn, M. Hesse, and S. Zenitani, “ Reconnection in compressible plasmas: Extended conversion region,” Physics of Plasmas 18, 111202 (2011).
J. Birn, J. E. Borovsky, and M. Hesse, “ The role of compressibility in energy release by magnetic reconnection,” Phys. Plasmas 19, 082109 (2012).
T. Miyoshi and K. Kusano, “ A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics,” J. Comput. Phys. 208, 315344 (2005).
W. Park, D. A. Monticello, and R. B. White, “ Reconnection rates of magnetic fields including the effects of viscosity,” Phys. Fluids 27, 137149 (1984).
S. Zenitani, M. Hesse, A. Klimas, C. Black, and M. Kuznetsova, “ The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields,” Phys. Plasmas 18, 122108 (2011);
S. Zenitani, M. Hesse, A. Klimas, C. Black, and M. Kuznetsova, e-print arXiv:1110.3103 [astro-ph.SR].
T. Minoshima, Y. Matsumoto, and T. Amano, “ A finite volume formulation of the multi-moment advection scheme for Vlasov simulations of magnetized plasma,” Comput. Phys. Commun. 187, 137151 (2015).
J. Birn and M. Hesse, “ Geospace environment modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and hall effects,” J. Geophys. Res. 106, 37373750, doi:10.1029/1999JA001001 (2001).
T. Terasawa, “ Hall current effect on tearing mode instability,” Geophys. Res. Lett. 10, 475478, doi:10.1029/GL010i006p00475 (1983).
D. Biskamp, E. Schwarz, and J. F. Drake, “ Ion-controlled collisionless magnetic reconnection,” Phys. Rev. Lett. 75, 38503853 (1995).
M. A. Shay and J. F. Drake, “ The role of electron dissipation on the rate of collisionless magnetic reconnection,” Geophys. Res. Lett. 25, 37593762, doi:10.1029/1998GL900036 (1998).
M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, “ The scaling of collisionless, magnetic reconnection for large systems,” Geophys. Res. Lett. 26, 21632166, doi:10.1029/1999GL900481 (1999).
L. S. Shepherd and P. A. Cassak, “ Comparison of secondary islands in collisional reconnection to hall reconnection,” Phys. Rev. Lett. 105, 015004 (2010);
L. S. Shepherd and P. A. Cassak, e-print arXiv:1006.1883 [physics.plasm-ph].
T. Yokoyama and K. Shibata, “ Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model,” Astrophys. J. 549, 11601174 (2001).
S. Tsuneta, “ Structure and dynamics of magnetic reconnection in a solar flare,” Astrophys. J. 456, 840 (1996).
H. Ji and W. Daughton, “ Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas,” Phys. Plasmas 18, 111207 (2011);
H. Ji and W. Daughton, e-print arXiv:1109.0756 [astro-ph.IM].

Data & Media loading...


Article metrics loading...



Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number ), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for . The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently, boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number  < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd