Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4961914
1.
S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.1017
2.
G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1353
3.
G. Bannasch, T. C. Killian, and T. Pohl, Phys. Rev. Lett. 110, 253003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.253003
4.
N. P. Oxtoby, E. J. Griffith, C. Durniak, J. F. Ralph, and D. Samsonov, Phys. Rev. Lett. 111, 015002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.015002
5.
H. M. Van Horn, Science 252, 384 (1991).
http://dx.doi.org/10.1126/science.252.5004.384
6.
G. Chabrier, F. Douchin, and A. Y. Potekhin, J. Phys.: Condens. Matter 14, 9133 (2002).
http://dx.doi.org/10.1088/0953-8984/14/40/307
7.
R. P. Prajapati and R. K. Chhajlani, Astrophys. Space Sci. 350, 637 (2014).
http://dx.doi.org/10.1007/s10509-013-1768-8
8.
M. Jamil, A. Rasheed, Ch. Rozina, Y. D. Jung, and M. Salimullah, Phys. Plasmas 22, 082113 (2015).
http://dx.doi.org/10.1063/1.4928437
9.
J. Binney and S. Tremaine, Galactic Dynamics ( Princeton University Press, 2008).
10.
J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.4009
11.
H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, Phys. Rev. Lett. 73, 652 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.652
12.
X. H. Zheng and J. C. Earnshaw, Phys. Rev. Lett. 75, 4214 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4214
13.
N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).
http://dx.doi.org/10.1016/0032-0633(90)90147-I
14.
M. A. Moghanjoughi and P. K. Shukla, Phys. Rev. E 86, 066401 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.066401
15.
P. K. Shukla, A. A. Mamun, and D. A. Mendis, Phys Rev. E 84, 026405 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.026405
16.
S. Ghosh, N. Chakrabarti, and P. K. Shukla, Phys. Plasmas 19, 072123 (2012).
http://dx.doi.org/10.1063/1.4739782
17.
P. Sharma and R. K. Chhajlani, Phys. Plasmas 21, 072104 (2014).
http://dx.doi.org/10.1063/1.4886140
18.
A. A. Mamun and R. A. Cairns, Phys. Rev. E 79, 055401 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.055401
19.
P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998).
http://dx.doi.org/10.1063/1.873073
20.
P. K. Shukla and A. A. Mamun, IEEE Trans. Plasma Sci. 29, 221 (2001).
http://dx.doi.org/10.1109/27.923698
21.
B. S. Xie and M. Y. Yu, Phys. Plasmas 7, 3137 (2000).
http://dx.doi.org/10.1063/1.874219
22.
P. K. Kaw, K. Nishikawa, and N. Sato, Phys. Plasmas 9, 387 (2002).
http://dx.doi.org/10.1063/1.1435367
23.
P. Sharma, S. Jain, and R. P. Prajapati, IEEE Trans. Plasma Sci. 44, 862 (2016).
http://dx.doi.org/10.1109/TPS.2016.2542201
24.
P. K. Shukla and I. Sandberg, Phys. Rev. E 67, 036401 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.036401
25.
S. A. Khrapak, A. V. Ivlev, V. V. Yaroshenko, and G. E. Morfill, Phys. Rev. Lett. 102, 245004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.245004
26.
S. Hamaguchi and R. T. Farouki, Phys. Rev. E 49, 4430 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.4430
27.
M. Asaduzzaman and A. A. Mamun, Phys. Plasmas 19, 093704 (2012).
http://dx.doi.org/10.1063/1.4750056
28.
A. A. Mamun, K. S. Ashrafi, and P. K. Shukla, Phys. Rev. E 82, 026405 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.026405
29.
P. Sharma, Europhys. Lett. 107, 15001 (2014).
http://dx.doi.org/10.1209/0295-5075/107/15001
30.
R. P. Prajapati and S. Bhakta, Astrophys. Space Sci. 357, 101 (2015).
http://dx.doi.org/10.1007/s10509-015-2328-1
31.
P. Bandyopadhyay, K. Jiang, R. Dey, and G. E. Morfill, Phys. Plasmas 19, 123707 (2012).
http://dx.doi.org/10.1063/1.4773194
32.
M. Asaduzzaman and A. A. Mamun, Phys. Rev. E 86, 016409 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.016409
33.
S. Pervin, S. S. Duha, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 1 (2013).
http://dx.doi.org/10.1017/S0022377812000542
34.
M. Asaduzzaman, A. A. Mamun, and K. S. Ashrafi, Phys. Plasmas 18, 113704 (2011).
http://dx.doi.org/10.1063/1.3657432
35.
C. B. Dwivedi, R. Singh, and K. Avinash, Phys. Scr. 53, 760 (1996).
http://dx.doi.org/10.1088/0031-8949/53/6/019
36.
S. Hussain, S. Mahmood, and Aman-ur-Rehman, Phys. Plasmas 21, 112901 (2014).
http://dx.doi.org/10.1063/1.4901038
37.
R. P. Prajapati, S. Bhakta, and R. K. Chhajlani, Phys. Plasmas 23, 053703 (2016).
http://dx.doi.org/10.1063/1.4950821
38.
G. Gozadinos, A. V. Ivlev, and J. P. Boef, New J. Phys. 5, 32 (2003).
http://dx.doi.org/10.1088/1367-2630/5/1/332
39.
V. Yaroshenko, F. Verheest, H. M. Thomas, and G. E. Morfill, New J. Phys. 11, 073013 (2009).
http://dx.doi.org/10.1088/1367-2630/11/7/073013
40.
S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91 (1987).
http://dx.doi.org/10.1016/0370-1573(87)90125-6
41.
M. A. Berkovsky, Phys. Lett. A 166, 365 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90724-Z
42.
W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A 21, 2087 (1980).
http://dx.doi.org/10.1103/PhysRevA.21.2087
43.
W. Masood, M. Salimullah, and H. A. Shah, Phys. Lett. A 372, 6757 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.09.034
44.
L. Stenflo, P. K. Shukla, and M. Marklund, Europhys. Lett. 74, 844 (2006).
http://dx.doi.org/10.1209/epl/i2006-10032-x
45.
P. K. Shukla and S. Ali, Phys. Plasmas 12, 114502 (2005).
http://dx.doi.org/10.1063/1.2136376
46.
P. Sharma and S. Jain, Europhys. Lett. 113, 65001 (2016).
http://dx.doi.org/10.1209/0295-5075/113/65001
47.
A. A. Mamun, P. K. Shukla, and T. Farid, Phys. Plasmas 7, 2329 (2000).
http://dx.doi.org/10.1063/1.874068
48.
P. Sharma and S. Jain, Phys. Scr. 91, 015602 (2016).
http://dx.doi.org/10.1088/0031-8949/91/1/015602
49.
W. Ebeling and B. Militzer, Phys. Lett. A 226, 298 (1997).
http://dx.doi.org/10.1016/S0375-9601(96)00948-6
50.
K. S. Ashrafi, A. A. Mamun, and P. K. Shukla, Europhys. Lett. 92, 15004 (2010).
http://dx.doi.org/10.1209/0295-5075/92/15004
51.
M. Rosenberg and P. K. Shukla, Plasma Phys. Controlled Fusion 46, 1807 (2004).
http://dx.doi.org/10.1088/0741-3335/46/12/001
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4961914
Loading
/content/aip/journal/pop/23/9/10.1063/1.4961914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4961914
2016-09-08
2016-09-30

Abstract

The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length cm and Jeans mass and for non-degenerate laboratory plasma Jeans length cm and Jeans mass . The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4961914.html;jsessionid=G1QlHaG0Q4sQRhmyC1ryQH6k.x-aip-live-03?itemId=/content/aip/journal/pop/23/9/10.1063/1.4961914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4961914&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4961914'
Right1,Right2,Right3,