Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. B. Collins, Microwave Magnetrons ( McGraw-Hill, New York, 1948).
L. Brillouin, “ Theory of the magnetron. I,” Phys. Rev. 60(5), 385396 (1941).
J. C. Slater, Microwave Electronics ( Van Nostrand, Princeton, NJ, 1950).
A. Palevsky, G. Bekefi, and A. T. Drobot, “ Numerical simulation of oscillating magnetrons,” J. Appl. Phys. 52(8), 49384941 (1981).
P. J. Christenson and Y. Y. Lau, “ One-dimensional modulational instability in a crossed-field gap,” Phys. Rev. Lett. 76(18), 33243327 (1996).
P. J. Christenson, D. P. Chernin, A. L. Garner, and Y. Y. Lau, “ Resistive destabilization of cycloidal electron flow and universality of (near‐) Brillouin flow in a crossed‐field gap,” Phys. Plasmas 3(12), 44554462 (1996).
R. L. Walker, in Microwave Magnetrons, edited by G. B. Collins ( McGraw-Hill, New York, 1948), p. 227.
J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 3rd ed. ( CRC Press, Boca Raton, FL, 2015).
Y. Y. Lau, J. W. Luginsland, K. L. Cartwright, D. H. Simon, W. Tang, B. W. Hoff, and R. M. Gilgenbach, “ A re-examination of the Buneman–Hartree condition in a cylindrical smooth-bore relativistic magnetron,” Phys. Plasmas 17(3), 033102 (2010).
D. H. Simon, Ph.D. Dissertation, The University of Michigan, Ann Arbor, 2016.
O. Buneman, R. Levy, and L. Linson, “ Stability of crossed-field electron beams,” J. Appl. Phys. 37(8), 3203 (1966).
J. Swegle and E. Ott, “ Instability of the Brillouin-flow equilibrium in magnetically insulated structures,” Phys. Rev. Lett. 46(14), 929932 (1981).
T. M. Antonsen, Jr., E. Ott, C. L. Chang, and A. T. Drobot, “ Parametric scaling of the stability of relativistic laminar flow magnetic insulation,” Phys. Fluids 28(9), 28782881 (1985).
R. Davidson, H. Chan, C. Chen, and S. Lund, “ Equilibrium and stability properties of intense non-neutral electron flow,” Rev. Mod. Phys. 63(2), 341374 (1991).
R. C. Davidson, Physics of Nonneutral Plasmas ( Imperial College Press, 2001).
K. T. Tsang and R. C. Davidson, “ Macroscopic cold-fluid equilibrium properties of relativistic non-neutral electron flow in a cylindrical diode,” Phys. Rev. A 33(6), 42844292 (1986).
R. C. Davidson, K. T. Tsang, and H. S. Uhm, “ Stabilization of diocotron instability by relativistic and electromagnetic effects for intense nonneutral electron flow,” Phys. Lett. A 125(1), 6167 (1987).
D. H. Simon, Y. Y. Lau, G. Greening, P. Wong, B. W. Hoff, and R. M. Gilgenbach, “ Stability of Brillouin flow in planar, conventional, and inverted magnetrons,” Phys. Plasmas 22(8), 082104 (2015).
D. Chernin and Y. Y. Lau, “ Stability of laminar electron layers,” Phys. Fluids 27(9), 23192331 (1984).
D. M. French, B. W. Hoff, Y. Y. Lau, and R. M. Gilgenbach, “ Negative, positive, and infinite mass properties of a rotating electron beam,” Appl. Phys. Lett. 97(11), 111501 (2010).
Y. Y. Lau, “ Theory of crossed-field devices and a comparative study of other radiation sources,” in High-power Microwave Sources, edited by V. L. Granatstein and I. Alexeff ( Artech House, Norwood, MA, 1987), pp. 309351.
R. C. Davidson, G. L. Johnston, K. T. Tsang, and A. T. Drobot, “ Cylindrical Brillouin flow in relativistic smooth-bore magnetrons,” Proc. SPIE 1061, 186200 (1989).
D. H. Simon, Y. Y. Lau, J. W. Luginsland, and R. M. Gilgenbach, “ An unnoticed property of the cylindrical relativistic Brillouin flow,” Phys. Plasmas 19(4), 043103 (2012).
R. M. Gilgenbach, Y. Y. Lau, D. M. French, B. W. Hoff, J. Luginsland, and M. Franzi, “ Crossed field device,” U.S. patent No. US8841867 B2 (23 Sep. 2014).
R. M. Gilgenbach, Y. Y. Lau, D. M. French, B. W. Hoff, M. Franzi, and J. Luginsland, “ Recirculating planar magnetrons for high-power high-frequency radiation generation,” IEEE Trans. Plasma Sci. 39(4), 980987 (2011).
M. A. Franzi, R. M. Gilgenbach, B. W. Hoff, D. A. Chalenski, D. Simon, Y. Y. Lau, and J. Luginsland, “ Recirculating-planar-magnetron simulations and experiment,” IEEE Trans. Plasma Sci. 41(4), 639645 (2013).
J. W. Gewartowski and H. A. Watson, Principles of Electron Tubes: Including Grid-Controlled Tubes, Microwave Tubes, and Gas Tubes ( Van Nostrand, Princeton, NJ, 1965).
R. C. Davidson, K. Tsang, and J. A. Swegle, “ Macroscopic extraordinary‐mode stability properties of relativistic non‐neutral electron flow in a planar diode with applied magnetic field,” Phys. Fluids 27(9), 23322345 (1984).
N. M. Kroll and W. E. Lamb, “ The resonant modes of the rising sun and other unstrapped magnetron anode blocks,” J. Appl. Phys. 19(2), 166186 (1948).
Y. Y. Lau and D. Chernin, “ A review of the ac space‐charge effect in electron–circuit interactions,” Phys. Fluids B: Plasma Phys. 4(11), 34733497 (1992).
Y. Y. Lau and L. R. Barnett, “ A low magnetic-field gyrotron gyro-magnetron,” Int. J. Electron. 53(6), 693698 (1982).

Data & Media loading...


Article metrics loading...



Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonant interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd