Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4961956
1.
S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion ( Oxford University Press, New York, 2004).
2.
J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).
http://dx.doi.org/10.1063/1.1578638
3.
H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids 28, 3676 (1985).
http://dx.doi.org/10.1063/1.865099
4.
S. Fujioka, H. Shiraga, M. Nishikino, Y. Tamari, K. Shigemori, M. Nakai, H. Azechi, K. A. Tanaka, and T. Yamanaka, Rev. Sci. Instrum. 74, 2198 (2003).
http://dx.doi.org/10.1063/1.1537852
5.
S. Fujioka, H. Shiraga, M. Nishikino, K. Shigemori, A. Sunahara, M. Nakai, H. Azechi, K. Nishihara, and T. Yamanaka, Phys. Plasmas 10, 4784 (2003).
http://dx.doi.org/10.1063/1.1622951
6.
F. J. Marshall, P. W. McKenty, J. A. Delettrez, R. Epstein, J. P. Knauer, V. A. Smalyuk, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. Séguin, and R. C. Mancini, Phys. Rev. Lett. 102, 185004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.185004
7.
C. M. Huntington, C. M. Krauland, C. C. Kuranz, R. P. Drake, H.-S. Park, D. H. Kalantar, B. R. Maddox, B. A. Remington, and J. Kline, Rev. Sci. Instrum. 81, 10E536 (2010).
http://dx.doi.org/10.1063/1.3496984
8.
B. Chen, Z. Yang, M. Wei, Y. Pu, X. Hu, T. Chen, S. Liu, J. Yan, T. Huang, S. Jiang, and Y. Ding, Phys. Plasmas 21, 122705 (2014).
http://dx.doi.org/10.1063/1.4903336
9.
W. Theobald, A. A. Solodov, C. Stoeckl, K. S. Anderson, F. N. Beg, R. Epstein, G. Fiksel, E. M. Giraldez, V. Yu. Glebov, H. Habara, S. Ivancic, L. C. Jarrott, F. J. Marshall, G. McKiernan, H. S. McLean, C. Mileham, P. M. Nilson, P. K. Patel, F. Pérez, T. C. Sangster, J. J. Santos, H. Sawada, A. Shvydky, R. B. Stephens, and M. S. Wei, Nat. Commun. 5, 5785 (2014).
http://dx.doi.org/10.1038/ncomms6785
10.
B. J. Kozioziemski, J. A. Koch, A. Barty, H. E. Martz, Jr., W.-K. Lee, and K. Fezzaa, J. Appl. Phys. 97, 063103 (2005).
http://dx.doi.org/10.1063/1.1862764
11.
J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, Rev. Sci. Instrum. 81, 10E520 (2010).
http://dx.doi.org/10.1063/1.3485109
12.
R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
13.
M. Schollmeier, A. B. Sefkow, M. Geissel, A. V. Arefiev, K. A. Flippo, S. A. Gaillard, R. P. Johnson, M. W. Kimmel, D. T. Offermann, P. K. Rambo, J. Schwarz, and T. Shimada, Phys. Plasmas 22, 043116 (2015).
http://dx.doi.org/10.1063/1.4918332
14.
S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, Nature 431, 535 (2004).
http://dx.doi.org/10.1038/nature02939
15.
C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature 431, 538 (2004).
http://dx.doi.org/10.1038/nature02900
16.
J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, Nature 431, 541 (2004).
http://dx.doi.org/10.1038/nature02963
17.
W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
18.
X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).
http://dx.doi.org/10.1038/ncomms2988
19.
H. T. Kim, K. H. Pae, H. J. Cha, I.-J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.165002
20.
C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, P. A. Amendt, S. P. Hatchett, O. L. Landen, A. J. Mackinnon, P. K. Patel, V. A. Smalyuk, T. C. Sangster, and J. P. Knauer, Phys. Rev. Lett. 97, 135003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.135003
21.
J. R. Rygg, F. H. Séguin, C. K. Li, J. A. Frenje, M. J.-E. Manuel, R. D. Petrasso, R. Betti, J. A. Delettrez, O. V. Gotchev, J. P. Knauer, D. D. Meyerhofer, F. J. Marshall, C. Stoeckl, and W. Theobald, Science 319, 1223 (2008).
http://dx.doi.org/10.1126/science.1152640
22.
C. K. Li, F. H. Séguin, J. A. Frenje, M. Rosenberg, R. D. Petrasso, P. A. Amendt, J. A. Koch, O. L. Landen, H. S. Park, H. F. Robey, R. P. J. Town, A. Casner, F. Philippe, R. Betti, J. P. Knauer, D. D. Meyerhofer, C. A. Back, J. D. Kilkenny, and A. Nikroo, Science 327, 1231 (2010).
http://dx.doi.org/10.1126/science.1185747
23.
L. Gao, P. M. Nilson, I. V. Igumenschev, G. Fiksel, R. Yan, J. R. Davies, D. Martinez, V. Smalyuk, M. G. Haines, E. G. Blackman, D. H. Froula, R. Betti, and D. D. Meyerhofer, Phys. Rev. Lett. 110, 185003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.185003
24.
L. Gao, P. M. Nilson, I. V. Igumenshchev, M. G. Haines, D. H. Froula, R. Betti, and D. D. Meyerhofer, Phys. Rev. Lett. 114, 215003 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.215003
25.
V. Ramanathan, S. Banerjee, N. Powers, N. Cunningham, N. A. Chandler-Smith, K. Zhao, K. Brown, D. Umstadter, S. Clarke, S. Pozzi, J. Beene, C. R. Vane, and D. Schultz, Phys. Rev. Spec. Top. Accel. Beams 13, 104701 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.104701
26.
P. F. Zhu, Z. C. Zhang, L. Chen, R. Z. Li, J. J. Li, X. Wang, J. M. Cao, Z. M. Sheng, and J. Zhang, Rev. Sci. Instrum. 81, 103505 (2010).
http://dx.doi.org/10.1063/1.3491994
27.
P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. Sheng, and J. Zhang, Appl. Phys. Lett. 97, 211501 (2010).
http://dx.doi.org/10.1063/1.3521387
28.
S. Inoue, S. Tokita, K. Otani, M. Hashida, and S. Sakabe, Appl. Phys. Lett. 99, 031501 (2011).
http://dx.doi.org/10.1063/1.3612915
29.
W. Schumaker, N. Nakanii, C. McGuffey, C. Zulick, V. Chyvkov, F. Dollar, H. Habara, G. Kalintchenko, A. Maksimchuk, K. A. Tanaka, A. G. R. Thomas, V. Yanovsky, and K. Krushelnick, Phys. Rev. Lett. 110, 015003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.015003
30.
S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, F. S. Tsung, Z. Najmudin, W. B. Mori, C.-G. Wahlström, and K. Krushelnick, Phys. Rev. Lett. 96, 215001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215001
31.
O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
http://dx.doi.org/10.1038/nphys1872
32.
Y. Chen, X.-F. Wang, and G.-C. Shao, Acta Phys. Sin. 64, 154101 (2015).
http://dx.doi.org/10.7498/aps.64.154101
33.
A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).
http://dx.doi.org/10.1063/1.2903890
34.
S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Controlled Fusion 51, 015016 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/015016
35.
A. Ferrari, P. R. Sala, A. Fassò, and J. Ranft, “ FLUKA: A multi-particle transport code,” CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773, see http://www.fluka.org
36.
D. D. Meyerhofer, J. Bromage, C. Dorrer, J. H. Kelly, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, S. F. B. Morse, J. F. Myatt, P. M. Nilson, J. Qiao, T. C. Sangster, C. Stoeckl, L. J. Waxer, and J. D. Zuegel, J. Phys. Conf. Ser. 244, 032010 (2010).
http://dx.doi.org/10.1088/1742-6596/244/3/032010
37.
S. P. D. Mangles, B. R. Walton, M. Tzoufras, Z. Najmudin, R. J. Clarke, A. E. Dangor, R. G. Evans, S. Fritzler, A. Gopal, C. Hernandez-Gomez, W. B. Mori, W. Rozmus, M. Tatarakis, A. G. R. Thomas, F. S. Tsung, M. S. Wei, and K. Krushelnick, Phys. Rev. Lett. 94, 245001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.245001
38.
L. Willingale, A. G. R. Thomas, P. M. Nilson, H. Chen, J. Cobble, R. S. Craxton, A. Maksimchuk, P. A. Norreys, T. C. Sangster, R. H. H. Scott, C. Stoeckl, C. Zulick, and K. Krushelnick, New J. Phys. 15, 025023 (2013).
http://dx.doi.org/10.1088/1367-2630/15/2/025023
39.
N. Lemos, J. L. Martins, F. S. Tsung, J. L. Shaw, K. A. Marsh, F. Albert, B. B. Pollock, and C. Joshi, Plasma Phys. Controlled Fusion 58, 034018 (2016).
http://dx.doi.org/10.1088/0741-3335/58/3/034018
40.
F. Merrill, F. Harmon, A. Hunt, F. Mariam, K. Morley, C. Morris, A. Saunders, and C. Schwartz, Nucl. Instrum. Methods Phys. Res. B 261, 382 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.04.127
41.
Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng, M. Chen, Y. Y. Ma, W. X. Liang, Q. Z. Yu, Y. Zhang, F. Liu, Z. H. Wang, Z. Y. Wei, W. Zhao, Z. Jin, and J. Zhang, Phys. Rev. Lett. 96, 165003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.165003
42.
R. Ramis, R. Schmalz, and J. Meyer-ter-Vehn, Comput. Phys. Commun. 49, 475 (1988).
http://dx.doi.org/10.1016/0010-4655(88)90008-2
43.
V. L. Highland, Nucl. Instrum. Methods 129, 497 (1975).
http://dx.doi.org/10.1016/0029-554X(75)90743-0
44.
T. A. Lasinski, A. Barbaro-Galtieri, R. L. Kelly, A. Rittenberg, A. H. Rosenfeld, T. G. Trippe, N. Barash-Schmidt, C. Bricman, V. Chaloupka, P. Söding, and M. Roos, Rev. Mod. Phys. 45, S1 (1973).
http://dx.doi.org/10.1103/RevModPhys.45.S1
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4961956
Loading
/content/aip/journal/pop/23/9/10.1063/1.4961956
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4961956
2016-09-13
2016-09-28

Abstract

Electron and proton radiography of polystyrene planar targets with different density gradients is studied by Monte Carlo simulations in a regime that the incident charged-particle's kinetic energy is much higher than its energy loss in the targets. It is shown that by scattering of the electrons or protons, the density gradient causes modulations of the charged-particle beam transmitted from the target and the modulation contrast is sensitive only to a steep gradient, which suggests a novel diagnostic method wherein a steep density gradient could be distinguished from the scattering of a charged-particle beam in radiography. By using a 100-MeV charged-particle beam, it is found that the modulation is evident for a steep density gradient of width smaller than 1 m for electron radiography and 0.6 m for proton radiography, respectively, but almost negligible when the density gradient width is greater than 1 m. The feasibility of diagnosing the steep density gradients in compressed matter is confirmed by the simulations of radiographing a laser-ablated planar foil. Simulations also show that it is possible to diagnose the density gradients inside a multilayered spherical capsule.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4961956.html;jsessionid=vDf1eNs-XQe_ZZG9vv8kdwXT.x-aip-live-06?itemId=/content/aip/journal/pop/23/9/10.1063/1.4961956&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4961956&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4961956'
Right1,Right2,Right3,