Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4961957
1.
T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Phys. Rep. 449, 77130(2007).
http://dx.doi.org/10.1016/j.physrep.2007.04.007
2.
T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, Phys. Rev. Lett. 83, 4776 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4776
3.
T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, Phys. Rev. Lett. 86, 3759 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3759
4.
R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.145001
5.
D. O. Gericke and M. S. Murillo, Contrib. Plasma Phys. 43(5–6), 298301 (2003).
http://dx.doi.org/10.1002/ctpp.200310032
6.
C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. N. Martinez, P. G. Mickelson, S. B. Nagel, and T. C. Killian, Phys. Rev. Lett. 92, 143001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.143001
7.
P. Gupta, S. Laha, C. E. Simien, H. Gao, J. Castro, T. C. Killian, and T. Pohl, Phys. Rev. Lett. 99, 075005 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.075005
8.
P. McQuillen, J. Castro, S. J. Bradshaw, and T. C. Killian, Phys. Plasmas 22, 043514 (2015).
http://dx.doi.org/10.1063/1.4918705
9.
S. Laha, P. Gupta, C. E. Simien, H. Gao, J. Castro, T. Pohl, and T. C. Killian, Phys. Rev. Lett. 99, 155001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155001
10.
P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.185002
11.
P. Mora, Phys. Plasmas 12, 112102 (2005).
http://dx.doi.org/10.1063/1.2134768
12.
E. A. Cummings, J. E. Daily, D. S. Durfee, and S. D. Bergeson, Phys. Rev. Lett. 95, 235001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.235001
13.
C. Witte and J. L. Roberts, Phys. Plasmas 21, 103513 (2014).
http://dx.doi.org/10.1063/1.4898056
14.
F. F. Chen, Introduction to Plasma Physics ( Plenum Press, 1974), Chap. 5 and Appendix.
15.
M. Lyon, S. D. Bergeson, A. Diaw, and M. S. Murillo, Phys. Rev. E 91, 033101 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.033101
16.
T. K. Langin, T. Strickler, N. Maksimovic, P. McQuillen, T. Pohl, D. Vrinceanu, and T. C. Killian, Phys. Rev. E 93, 023201 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.023201
17.
T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. A 70, 033416 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.033416
18.
F. Robicheaux and J. D. Hanson, Phys. Rev. Lett. 88, 055002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.055002
19.
S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, Phys. Rev. Lett. 85, 318 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.318
20.
P. McQuillen, T. Strickler, T. Langin, and T. C. Killian, Phys. Plasmas 22, 033513 (2015).
http://dx.doi.org/10.1063/1.4915135
21.
J. L. Roberts, C. D. Fertig, M. J. Lim, and S. L. Rolston, Phys. Rev. Lett. 92, 253003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.253003
22.
P. McQuillen, J. Castro, T. Strickler, S. J. Bradshaw, and T. C. Killian, Phys. Plasmas 20, 043516 (2013).
http://dx.doi.org/10.1063/1.4802813
23.
D. S. Dorozhkina and V. E. Semenov, Phys. Rev. Lett. 81, 2691 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2691
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4961957
Loading
/content/aip/journal/pop/23/9/10.1063/1.4961957
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4961957
2016-09-02
2016-09-28

Abstract

Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4961957.html;jsessionid=oCioNwJNce0wjrWbzvAhcJ8n.x-aip-live-06?itemId=/content/aip/journal/pop/23/9/10.1063/1.4961957&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4961957&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4961957'
Right1,Right2,Right3,