Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Nakatsutsumi, J. R. Davies, R. Kodama, J. S. Green, K. L. Lancaster, K. U. Akli, F. N. Beg, S. N. Chen, D. Clark, R. R. Freeman et al., New J. Phys. 10, 043046 (2008).
Y. Ping, R. Shepherd, B. F. Lasinski, M. Tabak, H. Chen, H. K. Chung, K. B. Fournier, S. B. Hansen, A. Kemp, D. A. Liedahl et al., Phys. Rev. Lett. 100, 085004 (2008).
M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).
S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
A. P. L. Robinson, H. Schmitz, and J. Pasley, Phys. Plasmas 20, 122701 (2013).
H.-S. Park, D. M. Chambers, H.-K. Chung, R. J. Clarke, R. Eagleton, E. Giraldez, T. Goldsack, R. Heathcote, N. Izumi, M. H. Key et al., Phys. Plasmas 13, 056309 (2006).
H. Schmitz and A. Robinson, High Energy Density Phys. 15, 82 (2015).
A. P. L. Robinson and M. Sherlock, Phys. Plasmas 14, 083105 (2007).
A. P. L. Robinson, M. Key, and M. Tabak, Phys. Rev. Lett. 108, 125004 (2012).
B. Ramakrishna, S. Kar, A. P. L. Robinson, D. J. Adams, K. Markey, M. N. Quinn, X. H. Yuan, P. McKenna, K. L. Lancaster, J. S. Green et al., Phys. Rev. Lett. 105, 135001 (2010).
H. Schmitz, R. Lloyd, and R. G. Evans, Plasma Phys. Controlled Fusion 54, 085016 (2012).
R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics ( Academic Press, Amsterdam, 2005).
J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote et al., Phys. Rev. Lett. 100, 015003 (2008).
S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).
A. R. Bell, J. R. Davies, and S. M. Guerin, Phys. Rev. E 58, 2471 (1998).
J. C. Adam, A. Héron, and G. Laval, Phys. Rev. Lett. 97, 205006 (2006).
N. J. Sircombe, S. J. Hughes, and M. G. Ramsay, New J. Phys. 15, 025025 (2013).

Data & Media loading...


Article metrics loading...



Rapid heating of small buried regions by laser generated fast electrons may be useful for applications such as extreme ultraviolet (XUV) radiation sources or as drivers for shock experiments. In non-structured targets, the heating profile possesses a global maximum near the front surface. This paper presents a new target design that uses resistive guiding to concentrate the fast electron current density at a finite depth inside the target. The choice of geometry uses principles of non-imaging optics. A global temperature maximum at depths up to m into the target is achieved. Although theoretical calculations suggest that small source sizes should perform better than large ones, simulations show that a large angular spread at high intensities results in significant losses of the fast electrons to the sides. A systematic parameter scan suggests an optimal laser intensity. A ratio of 1.6 is demonstrated between the maximum ion temperature and the ion temperature at the front surface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd