Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962174
1.
F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
2.
H. C. Wu, J. Meyer-ter-Vehn, J. Fernández, and B. M. Hegelich, Phys. Rev. Lett. 104, 234801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.234801
3.
W. Luo, H. B. Zhuo, Y. Y. Ma, Y. M. Song, Z. C. Zhu, T. P. Yu, and M. Y. Yu, Appl. Phys. Lett. 103, 174103 (2013).
http://dx.doi.org/10.1063/1.4826600
4.
N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, 063902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.063902
5.
P. B. Corkum and F. Krausz, Nat. Phys. 3, 381387 (2007).
http://dx.doi.org/10.1038/nphys620
6.
M. Lewenstein, Science 297, 1131 (2002).
http://dx.doi.org/10.1126/science.1075873
7.
V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Opt. Express 16, 2109 (2008).
http://dx.doi.org/10.1364/OE.16.002109
9.
N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Phys. Rev. Lett. 93, 195003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.195003
10.
L.-X. Hu, T.-P. Yu, F.-Q. Shao, D.-B. Zou, and Y. Yin, Phys. Plasmas 22, 033104 (2015).
http://dx.doi.org/10.1063/1.4913984
11.
Y.-Y. Ma, Z.-M. Sheng, Y.-T. Li, W.-W. Chang, X.-H. Yuan, M. Chen, H.-C. Wu, J. Zheng, and J. Zhang, Phys. Plasmas 13, 110702 (2006).
http://dx.doi.org/10.1063/1.2388958
12.
V. V. Kulagin, V. A. Cherepenin, M. Sup Hur, and H. Suk, Phys. Rev. Lett. 99, 124801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.124801
13.
S. D. Baton, J. J. Santos, F. Amiranoff, H. Popescu, L. Gremillet, M. Koenig, E. Martinolli, O. Guilbaud, C. Rousseaux, M. Rabec Le Gloahec et al., Phys. Rev. Lett. 91, 105001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.105001
14.
K. Q. Pan, C. Y. Zheng, Dong Wu, L. H. Cao, Z. J. Liu, and X. T. He, Appl. Phys. Lett. 107, 183902 (2015).
http://dx.doi.org/10.1063/1.4935153
15.
A. Bigongiari, M. Raynaud, C. Riconda, A. Héron, and A. Macchi, Phys. Plasmas 18, 102701 (2011).
http://dx.doi.org/10.1063/1.3646520
16.
M. Cerchez, A. L. Giesecke, C. Peth, M. Toncian, B. Albertazzi, J. Fuchs, O. Willi, and T. Toncian, Phys. Rev. Lett. 110, 065003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.065003
17.
W. M. Wang, Z. M. Sheng, and J. Zhang, Phys. Plasmas 15, 030702 (2008).
http://dx.doi.org/10.1063/1.2898456
18.
M. Raynaud, J. Kupersztych, C. Riconda, J. C. Adam, and A. Héron, Phys. Plasmas 14, 092702 (2007).
http://dx.doi.org/10.1063/1.2755969
19.
A. Bigongiari, M. Raynaud, and C. Riconda, Phys. Rev. E 84, 015402(R) (2011).
http://dx.doi.org/10.1103/PhysRevE.84.015402
20.
D. an der Brügge, N. Kumar, A. Pukhov, and C. Rödel, Phys. Rev. Lett. 108, 125002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.125002
21.
P. Kumar and V. K. Tripathi, Appl. Phys. Lett. 100, 151605 (2012).
http://dx.doi.org/10.1063/1.3703592
22.
A. Bigongiari, M. Raynaud, C. Riconda, and A. Héron, Phys. Plasmas 20, 052701 (2013).
http://dx.doi.org/10.1063/1.4802989
23.
D. Wu, B. Qiao, and X. T. He, Phys. Plasmas 22, 093108 (2015).
http://dx.doi.org/10.1063/1.4930111
24.
F. Brunel, Phys. Rev. Lett. 59, 52 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.52
25.
C. Riconda, M. Raynaud, T. Vialis, and M. Grech, Phys. Plasmas 22, 073103 (2015).
http://dx.doi.org/10.1063/1.4923443
26.
L. Fedeli, A. Sgattoni, G. Cantono, D. Garzella, F. Réau, I. Prencipe, M. Passoni, M. Raynaud, M. Květoň, J. Proska et al., Phys. Rev. Lett. 116, 015001 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.015001
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962174
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962174
2016-09-02
2016-09-27

Abstract

With the help of particle-in-cell simulations, we show a stably propagating train of attosecond ( s) electron bunches which are generated along the target back surface via laser-solid interactions. The electron bunches are generated by the oscillating electric fields of the surface plasma wave. Because of the combinational effects of the electrostatic field and the static magnetic field on the target back surface, the electron bunches are stably propagating along the target back surface, which means they are totally separated from the laser pulse. The averaged energy of these electron bunches is over , the maximum averaged density is about (where is the critical density of the incident laser), and the averaged duration is less than 200 as. Such electron bunches are easily applied to the generation of attosecond x-rays via Compton backscattering. The energy conversion efficiency from the laser to the attosecond electron bunches is about 1.5%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962174.html;jsessionid=NsubDwECTDqHcOv_90kL1VQ9.x-aip-live-06?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962174&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962174&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962174'
Right1,Right2,Right3,