Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962186
1.
R. Toth, S. Fourmaux, T. Ozaki, M. Servol, J. C. Kieffer, R. E. Kincaid, Jr., and A. Krol, Phys. Plasmas 14, 053506 (2007).
http://dx.doi.org/10.1063/1.2730778
2.
S. N. Chen, G. Gregori, P. K. Patel, H.-K. Chung, R. G. Evans, R. R. Freeman, E. Garcia Saiz, S. H. Glenzer, S. B. Hansen, F. Y. Khattak, J. A. King, A. J. Mackinnon, M. M. Notley, J. R. Pasley, D. Riley, R. B. Stephens, R. L. Weber, S. C. Wilks, and F. N. Beg, Phys. Plasmas 14, 102701 (2007).
http://dx.doi.org/10.1063/1.2777118
3.
T. Pikuz, A. Faenov, S. Magnitskiy, N. Nagorskiy, M. Tanaka, M. Ishino, M. Nishikino, Y. Fukuda, M. Kando, Y. Kato, and T. Kawachi, High Power Laser Sci. Eng. 2, e12 (2014).
http://dx.doi.org/10.1017/hpl.2014.14
4.
K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, Nature 422, 287 (2003).
http://dx.doi.org/10.1038/nature01490
5.
M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, Rev. Sci. Instrum. 81, 026107 (2010).
http://dx.doi.org/10.1063/1.3302827
6.
H.-S. Park, D. M. Chambers, H.-K. Chung, R. J. Clarke, R. Eagleton, E. Giraldez, T. Goldsack, R. Heathcote, N. Izumi, M. H. Key, J. A. King, J. A. Koch, O. L. Landen, A. Nikroo, P. K. Patel, D. F. Price, B. A. Remington, H. F. Robey, R. A. Snavely, D. A. Steinman, R. B. Stephens, C. Stoeckl, M. Storm, M. Tabak, W. Theobald, R. P. J. Town, J. E. Wickersham, and B. B. Zhang, Phys. Plasmas 13, 056309 (2006).
http://dx.doi.org/10.1063/1.2178775
7.
H.-S. Park, B. R. Maddox, E. Giraldez, S. P. Hatchett, L. T. Hudson, N. Izumi, M. H. Key, S. Le Pape, A. J. MacKinnon, A. G. MacPhee, P. K. Patel, T. W. Phillips, B. A. Remington, J. F. Seely, R. Tommasini, R. Town, J. Workman, and E. Brambrink, Phys. Plasmas 15, 072705 (2008).
http://dx.doi.org/10.1063/1.2957918
8.
N. Xiang and J. Cary, Phys. Rev. Lett. 100(8), 085002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.085002
9.
N. A. M. Hafz, T. M. Jeong, I. W. Choi, S. K. Lee, K. H. Pae, V. V. Kulagin, J. H. Sung, T. J. Yu, K.-H. Hong, T. Hosokai, J. R. Cary, D.-K. Ko, and J. Lee, Nat. Photonics 2(9), 571577 (2008).
http://dx.doi.org/10.1038/nphoton.2008.155
10.
L. Cao, M. Chen, Z. Zhao, H. Cai, S. Wu, Y. Gu, W. Yu, M. Y. Yu, and X. T. He, Phys. Plasmas 18, 054501 (2011).
http://dx.doi.org/10.1063/1.3589303
11.
B. Westover, C. D. Chen, P. K. Patel, H. McLean, and F. N. Beg, Phys. Plasmas 21, 031212 (2014).
http://dx.doi.org/10.1063/1.4865371
12.
G. Malka and J. L. Miquel, Phys. Rev. Lett. 77, 75 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.75
13.
K. B. Wharton, S. P. Hatchett, S. C. Wilks, M. H. Key, J. D. Moody, V. Yanovsky, A. A. Offenberger, B. A. Hammel, M. D. Perry, and C. Joshi, Phys. Rev. Lett. 81, 822 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.822
14.
L. Cao, Y. Gu, Z. Zhao, L. Cao, W. Huang, W. Zhou, H. B. Cai, X. T. He, W. Yu, and M. Y. Yu, Phys. Plasmas 17, 103106 (2010).
http://dx.doi.org/10.1063/1.3481463
15.
Z. Zhao, L. Cao, L. Cao, J. Wang, W. Huang, W. Jiang, Y. He, Y. Wu, B. Zhu, K. Dong, Y. Ding, B. Zhang, Y. Gu, M. Y. Yu, and X. T. He, Phys. Plasmas 17, 123108 (2010).
http://dx.doi.org/10.1063/1.3507292
16.
L. Cao, Y. Gu, Z. Zhao, L. Cao, W. Huang, W. Zhou, X. T. He, W. Yu, and M. Y. Yu, Phys. Plasmas 17, 043103 (2010).
http://dx.doi.org/10.1063/1.3360298
17.
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. DellAcqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. ONeale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
18.
J. Wang, Z. Zhao, W. He, B. Zhu, K. Dong, Y. Wu, T. Zhang, G. Niu, K. Zhou, N. Xie, W. Zhou, and Y. Gu, Chin. Opt. Lett. 13(3), 031001 (2015).
http://dx.doi.org/10.3788/COL201513.031001
19.
W. L. Kruer and K. Estabrook, Phys. Fluids 28, 430 (1985).
http://dx.doi.org/10.1063/1.865171
20.
S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1383
21.
K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
http://dx.doi.org/10.1063/1.861276
22.
L. Cao, W. Chang, and Z. Yue, Phys. Plasmas 5, 499 (1998).
http://dx.doi.org/10.1063/1.872732
23.
P. Gibbon, Phys. Rev. Lett. 73, 664 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.664
24.
B. Li, Z. Zhang, J. Wang, B. Zhang, Z. Zhao, L. Shan, W. Zhou, L. Cao, B. Zhang, and Y. Gu, Phys. Plasmas 22, 123118 (2015).
http://dx.doi.org/10.1063/1.4938515
25.
J. Yu, W. Zhou, L. Cao, Z. Zhao, L. Cao, L. Shan, D. Liu, X. Jin, B. Li, and Y. Gu, Appl. Phys. Lett. 100, 204101 (2012).
http://dx.doi.org/10.1063/1.4718735
26.
J. Wang, Z. Q. Zhao, W. H. He, L. H. Cao, K. G. Dong, Y. C. Wu, B. Zhu, T. K. Zhang, B. Zhang, Z. M. Zhang, and Y. Q. Gu, Phys. Plasmas 21, 103111 (2014).
http://dx.doi.org/10.1063/1.4897319
27.
F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, Phys. Plasmas 4, 447 (1997).
http://dx.doi.org/10.1063/1.872103
28.
K. Yasuike, M. H. Key, S. P. Hatchett, R. A. Snavely, and K. B. Wharton, Rev. Sci. Instrum. 72, 1236 (2001).
http://dx.doi.org/10.1063/1.1319373
29.
Y. Q. Gu, D. F. Cai, Z. J. Zheng, X. D. Yang, W. M. Zhou, C. Y. Jiao, H. Chen, T. S. Wen, and S. T. Chunyu, Acta Phys. Sin. 54, 0186 (2005).
30.
H. Schwoerer, P. Gibbon, S. Dsterer, R. Behrens, C. Ziener, C. Reich, and R. Sauerbrey, Phys. Rev. Lett. 86, 2317 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2317
31.
A. K. F. Haque, M. A. Uddin, and A. K. Basak, Phys. Rev. A 73, 012708 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.012708
32.
M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, Phys. Rev. Lett. 102, 045008 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045008
33.
J. R. Davies, Phys. Rev. E 65, 026407 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.026407
34.
L. Cao, W. Pei, Z. Liu, T. Chang, B. Li, and C. Zheng, Plasma Sci. Technol. 8, 269 (2006).
http://dx.doi.org/10.1088/1009-0630/8/3/05
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962186
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962186
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962186
2016-09-06
2016-09-30

Abstract

We focus on the transport processes from hot electrons to x-ray emission in a copper nanobrush target. The physics on the enhancement of photon yield and conversion efficiency from laser to x-ray is studied by combining Monte Carlo simulations and previous particle-in-cell simulation results. Simulation results show that photon yield and electron- photon conversion efficiency from nanobrush targets rise gradually and then stay nearly constant. photon yield from the structured nanobrush target increases with peak number density , but the yield is a little less than that from the same-size planar target when the electron temperature and . It is because the number density of atoms and ions in the nanobrush target is almost one half of the foil target. Compared to the planar target, photons after the nanobrush target are more than those before the target. Because it is easier for the electrons to enter the structured target surface, and x-ray source is produced in the deeper position of the structured nanobrush target. Considering the realistic number of hot electrons produced by laser-nanobrush and -planar targets interaction, photon yield in nanobrush targets has a significant enhancement of over 2–6 folds relative to laser-foil irradiation. The yield and from the nanobrush target are, respectively, and when laser strength . The yield and decrease gradually with the laser strength, but the values are always higher than that from the planar target. Therefore, the laser-nanobrush target interaction can produce brighter and smaller-size photon source, compared to a planar target.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962186.html;jsessionid=dXrNwqRGBCeg0mZrLhqt3DGh.x-aip-live-02?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962186&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962186&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962186'
Right1,Right2,Right3,