Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962233
1.
D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).
http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
2.
P. Bliokh, V. Sinitsin, and V. Yaroshenko, Dusty and Self-Gravitational Plasma in Space ( Kluwer, Dordrecht, 1995).
3.
A. Bouchoule, Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing ( Wiley, Chichester, 1999).
4.
B. Farokhi, P. K. Shukla, N. L. Tsintsadze, and D. D. Tskhakaya, Phys. Plasmas 7, 814 (2000).
http://dx.doi.org/10.1063/1.873876
5.
J. Mahmoodi, P. K. Shukla, N. L. Tsintsadze, and D. D. Tskhakaya, Phys. Rev. Lett. 84, 2626 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2626
6.
P. K. Shukla and A. A. Mamum, Introduction to Dusty Plasma Physics ( Institute of Physics Publishing, Bristol, 2002).
7.
H. F. Beyer and V. P. Shevelko, Introduction to the Physics of Highly Charged Ions ( Institute of Physics, Bristol, 2003).
8.
I. Kourakis and P. K. Shukla, Phys. Plasmas 11, 2322 (2004).
http://dx.doi.org/10.1063/1.1703529
9.
G. I. Sukhinin, A. V. Fedoseev, T. S. Ramazanov, K. N. Dzhumagulova, and R. Zh. Amangaliyeva, J. Phys. D 40, 7761 (2007).
http://dx.doi.org/10.1088/0022-3727/40/24/024
10.
T. S. Ramazanov, K. N. Dzhumagulova, A. N. Jumabekov, and M. K. Dosbolayev, Phys. Plasmas 15, 053704 (2008).
http://dx.doi.org/10.1063/1.2918336
11.
T. S. Ramazanov, S. K. Kodanova, K. N. Dzhumagulova, and N. K. Bastykova, EPL 96, 45004 (2011).
http://dx.doi.org/10.1209/0295-5075/96/45004
12.
Y. A. Ussenov, T. S. Ramazanov, K. N. Dzhumagulova, and M. K. Dosbolayev, EPL 105, 15002 (2014).
http://dx.doi.org/10.1209/0295-5075/105/15002
13.
F. B. Baimbetov, Kh. T. Nurekenov, and T. S. Ramazanov, Phys. Lett. A 202, 211 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00304-L
14.
O. M. Gradov and L. Stenflo, Phys. Lett. A 83, 257 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90977-4
15.
O. M. Gradov and L. Stenflo, Phys. Lett. A 95, 233 (1983).
http://dx.doi.org/10.1016/0375-9601(83)90613-8
16.
A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics ( Springer, Berlin, 1984).
17.
O. M. Gradov and L. Stenflo, Phys. Fluids B 3, 3201 (1991).
http://dx.doi.org/10.1063/1.859802
18.
L. Stenflo and O. M. Gradov, Phys. Rev. A 44, 5320 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.5320
19.
O. M. Gradov and L. Stenflo, Phys. Rev. E 50, 1695 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.1695
20.
L. Stenflo and M. Y. Yu, Phys. Plasmas 2, 1494 (1995).
http://dx.doi.org/10.1063/1.871364
21.
L. Stenflo, Phys. Scr. T 63, 59 (1996).
http://dx.doi.org/10.1088/0031-8949/1996/T63/008
22.
L. Stenflo and O. M. Gradov, Phys. Rev. E 58, 8044 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.8044
23.
L. Stenflo and M. Y. Yu, Phys. Plasmas 5, 3122 (1998).
http://dx.doi.org/10.1063/1.873038
24.
Yu. M. Aliev, H. Schlüter, and A. Shivarova, Guided-Wave-Produced Plasmas ( Springer, Berlin, 2000).
25.
L. Stenflo, P. K. Shukla, and M. Y. Yu, Phys. Plasmas 7, 2731 (2000).
http://dx.doi.org/10.1063/1.874116
26.
M. Y. Yu, Z. Chen, and L. Stenflo, Phys. Plasmas 8, 5081 (2001).
http://dx.doi.org/10.1063/1.1416484
27.
L. Stenflo and M. Y. Yu, Phys. Plasmas 10, 912 (2003).
http://dx.doi.org/10.1063/1.1555625
28.
H. J. Lee, Phys. Plasmas 12, 094701 (2005).
http://dx.doi.org/10.1063/1.2012167
29.
K.-Z. Zhang and J.-K. Xue, Phys. Plasmas 17, 032113 (2010).
http://dx.doi.org/10.1063/1.3372844
30.
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics ( McGraw-Hill, New York, 1973).
31.
M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, Phys. Plasmas 16, 014502 (2009).
http://dx.doi.org/10.1063/1.3070664
32.
M. Jamil, M. Shahid, W. Ali, M. Salimullah, H. A. Shah, and G. Murtaza, Phys. Plasmas 18, 063705 (2011).
http://dx.doi.org/10.1063/1.3595235
33.
M. Akbari-Moghanjoughi, J. Plasma Phys. 79, 189 (2013).
http://dx.doi.org/10.1017/S0022377812000839
34.
M. Jamil, Z. Mir, M. Asif, and M. Salimullah, Phys. Plasmas 21, 092111 (2014).
http://dx.doi.org/10.1063/1.4895664
35.
M. Akbari-Moghanjoughi, Phys. Plasmas 22, 022103 (2015).
http://dx.doi.org/10.1063/1.4907167
36.
E. E. Behery, F. Haas, and I. Kourakis, Phys. Rev. E 93, 023206 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.023206
37.
F. Haas and I. Kourakis, Plasma Phys. Controlled Fusion 57, 044006 (2015).
http://dx.doi.org/10.1088/0741-3335/57/4/044006
38.
S. Mahmood and F. Haas, Phys. Plasmas 21, 102308 (2014).
http://dx.doi.org/10.1063/1.4899041
39.
M. Jamil, M. Ali, A. Rasheed, K. Zubia, and M. Salimullah, Phys. Plasmas 22, 032107 (2015).
http://dx.doi.org/10.1063/1.4914167
40.
M.-J. Lee and Y.-D. Jung, Phys. Plasmas 23, 033702 (2016).
http://dx.doi.org/10.1063/1.4943961
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962233
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962233
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962233
2016-09-02
2016-09-24

Abstract

The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962233.html;jsessionid=PuXDX2seGk4_BsVqphQQ3sD1.x-aip-live-06?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962233&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962233&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962233'
Right1,Right2,Right3,