Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, Phys. Rev. Lett. 83, 4772 (1999).
A. Ting, C. I. Moore, K. Krushelnick, C. Manka, E. Esarey, P. Sprangle, R. Hubbard, H. R. Burris, R. Fischer, and M. Baine, Phys. Plasma 4, 1889 (1997).
E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
S. M. Hooker, Nat. Photonics 7, 775 (2013).
B. Shen and M. Y. Yu, Phys. Rev. Lett. 89, 275004 (2002).
T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl. Phys. Lett. 53, 2146 (1988).
R. Prasad, R. Singh, and V. K. Tripathi, Laser Part. Beams 27, 459 (2009).
Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai, Phys. Rev. Lett. 68, 48 (1992).
C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, Nature (London) 311, 525 (1984).
J. Badzika, S. Glowacz, S. Jablonski, P. Parys, J. Wolowski, and H. Hora, Laser Part. Beams 23, 401 (2005).
A. Kumar, M. K. Gupta, and R. P. Sharma, Laser Part. Beams 24, 403 (2006).
M. Roth, M. Allen, P. Audebert, A. Blazevic, E. Brambrink, T. E. Cowan, J. Fuchs, J.-C. Gauthier, M. Geißel, M. Hegelich, S. Karsch, J. Meyer-ter-Vehn, H. Ruhl, T. Schlegel, and R. B. Stephens, Plasma Phys. Controlled Fusion 44, B99 (2002).
C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Phys. Rev. Lett. 108, 165006 (2012).
S. Kneip, C. McGuffey, S. R. Nagel, C. Palmer, C. Bellei, J. Schreiber, C. Huntington, F. Dollar, T. Matsuoka, V. Chvykov, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Ta Phuoc, S. P. D. Mangles, K. Krushelnick, and Z. Najmudin, Proc. SPIE 7359, 73590T (2009).
R. Singn, A. K. Sharma, and V. K. Tripathi, Laser Part. Beams 28, 299 (2010).
W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, Phys. Plasmas 6, 2847 (1999).
C. L. Johnson and T. K. Chu, Phys. Rev. Lett. 32, 517 (1974).
A. V. Arefiev, B. N. Breizman, M. Schollmeier, and V. N. Khudik, Phys. Rev. Lett. 108, 145004 (2012).
A. V. Arefiev, V. N. Khudik, and M. Schollmeier, Phys. Plasmas 21, 033104 (2014).
A. P. L. Robinson, A. V. Arefiev, and D. Neely, Phys. Rev. Lett. 111, 065002 (2013).
A. V. Arefiev, A. P. L. Robinson, and V. N. Khudik, J. Plasma Phys. 81, 475810404 (2015).
A. V. Arefiev, V. N. Khudik, A. P. L. Robinson, G. Shvets, and L. Willingale, Phys. Plasma 23, 023111 (2016).

Data & Media loading...


Article metrics loading...



We discuss the development of the instability for electron acceleration and energy gain of electrons from laser waves in both homogeneous and inhomogeneous non-planar cylindrical plasma channels. We find that the instability (i.e., electron acceleration) in the cylindrical plasma channel can be developed more quickly and strongly than that in the planar two-dimensional plasma channel. Then, enhancement of energy gain and shortening of acceleration length in the cylindrical plasma channel are observed. For the cylindrical plasma channel, the electron in the inhomogeneous plasma channel can gain more energy from the laser and the acceleration length can be shortened by adjusting the width of the laser and the inhomogeneous charge density distributions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd