Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron. 10, 794 (1967).
G. S. Nusinovich, Introduction to the Physics of Gyrotrons ( John Hopkins University Press, Baltimore, 2004).
K. D. Hong, G. F. Brand, and T. Idehara, J. Appl. Phys. 74, 5250 (1993).
M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).
V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett. 102, 245101 (2009).
D. B. McDermott, N. C. Luhmann, A. Kupiszewski, and H. R. Jory, Phys. Fluids 26, 1936 (1983).
V. L. Bratman, I. V. Bandurkin, B. S. Dumesh, A. E. Fedotov, Yu. K. Kalynov, N. G. Kolganov, V. N. Manuilov, F. S. Rusin, S. V. Samsonov, and A. V. Savilov, AIP Conf. Proc. 807, 356 (2006).
W. Lawson, W. W. Destler, and C. D. Striffler, IEEE Trans. Plasma Sci. 13, 444 (1985).
T. Idehara, T. Tatsukawa, I. Ogawa, H. Tanabe, T. Mori, S. Wada, and T. Kanemaki, Appl. Phys. Lett. 56, 1743 (1990).
S. Spira-Hakkarainen, K. E. Kreischer, and R. J. Temkin, IEEE Trans. Plasma Sci. 18, 334 (1990).
K. Irwin, W. W. Destler, W. Lawson, J. Rodgers, E. P. Scannell, and S. T. Spang, J. Appl. Phys. 69, 627 (1991).
V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, V. N. Manuilov, M. M. Ofitserov, S. V. Samsonov, and A. V. Savilov, IEEE Trans. Plasma Sci. 27, 456 (1999).
V. L. Bratman, M. Yu. Glyavin, Yu. K. Kalynov, A. G. Litvak, A. G. Luchinin, A. V. Savilov, and V. E. Zapevalov, Int. J. Infrared Millimeter Terahertz Waves 32, 371 (2011).
A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Devices 58, 2777 (2011).
T. Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, R. Ikeda, I. Ogawa, T. Idehara, V. N. Manuilov, T. Shimozuma, S. Kubo, M. Nishiura, K. Tanaka, and K. Kawahata, Phys. Plasmas 19, 063106 (2012).
S. Alberti, J.-Ph. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-Ph. Hogge, A. Macor, E. de Rijk, M. da Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).
I. V. Bandurkin, Y. K. Kalynov, and A. V. Savilov, IEEE Trans. Electron Devices 62, 2356 (2015).
G. S. Nusinovich and T. B. Pankratova, Gyrotron, Collection of Scientific Works, edited by A. V. Gaponov-Grekhov ( IAP RAS, Gorky, 1981), pp. 169184 (in Russian).
K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, and Y. Mitsunaka, Phys. Rev. Lett. 73, 3532 (1994).
W. H. Urbanus, W. A. Bongers, C. A. J. Van Der Geer, P. Manintveld, J. Plomp, J. Pluygers, A. J. Poelman, P. H. M. Smeets, A. G. A. Verhoeven, V. L. Bratman, G. G. Denisov, A. V. Savilov, M. Yu. Shmelyov, M. Caplan, A. A. Varfolomeev, S. V. Tolmachev, and S. N. Ivanchenkov, Phys. Rev. E 59, 6058 (1999).
E. M. Choi, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, Phys. Plasmas 14, 093302 (2007).
I. Gr. Pagonakis, C. Wu, S. Illy, and J. Jelonnek, Phys. Plasmas 23, 043114 (2016).
I. V. Bandurkin and A. V. Savilov, Phys. Plasmas 22, 063113 (2015).
I. V. Bandurkin, Yu. K. Kalynov, I. V. Osharin, and A. V. Savilov, Phys. Plasmas 23, 013113 (2016).
L. A. Vainstein, Electromagnetic Waves ( Radio and Svyaz', Moscow, 1988).
V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt. Commun. 30, 409 (1979).
A. V. Savilov, P. A. Bespalov, K. Ronald, and A. D. R. Phelps, Phys. Plasmas 14, 113104 (2007).
G. G. Denisov, S. V. Kuzikov, and A. V. Savilov, Phys. Plasmas 18, 103102 (2011).
V. L. Bratman, G. G. Denisov, and A. V. Savilov, Int. J. Infrared Millimeter Waves 16, 459 (1995).
V. L. Bratman, A. D. R. Phelps, and A. V. Savilov, Phys. Plasmas 4, 2285 (1997).
A. V. Savilov, G. S. Nusinovich, and O. V. Sinitsyn, Phys. Plasmas 15, 073104 (2008).

Data & Media loading...


Article metrics loading...



In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd