Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962526
1.
J. M. Albert, J. Geophys. Res. 115, A00F05, doi:10.1029/2009JA014732 (2010).
http://dx.doi.org/10.1029/2009JA014732
2.
J. M. Albert, X. Tao, J. Bortnik, Y. Omura, D. Nunn, and D. Summers, Dynamics of the Earth's Radiation Belts and Inner Magnetosphere ( American Geophysical Union, 2013), pp. 243264.
3.
A. Artemyev, O. Agapitov, D. Mourenas, V. Krasnoselskikh, V. Shastun, and F. Mozer, Space Sci. Rev. 200, 261 (2016).
http://dx.doi.org/10.1007/s11214-016-0252-5
4.
D. Benisti and L. Gremillet, Phys. Rev. E 91, 042915 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.042915
5.
R. C. Davidson, Physics of Nonneutral Plasmas, 2nd ed. ( Imperial College Press/World Scientific Publishing, London, UK, 2001).
6.
A. G. Demekhov, V. Y. Trakhtengerts, M. Rycroft, and D. Nunn, Geomagn. Aeron. 49, 24, doi:10.1134/S0016793209010034 (2009).
http://dx.doi.org/10.1134/S0016793209010034
7.
I. Y. Dodin, P. F. Schmit, J. Rocks, and N. J. Fisch, Phys. Rev. Lett. 110, 215006 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.215006
8.
D. Dolgopyat, Repulsion from Resonances, Memoires de la Société Mathématique de France Vol. 128 (Société Mathématique de France, 2012).
9.
W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962).
10.
K. Hara, T. Chapman, J. W. Banks, S. Brunner, I. Joseph, R. L. Berger, and I. D. Boyd, Phys. Plasmas 22, 022104 (2015).
http://dx.doi.org/10.1063/1.4906884
11.
V. I. Karpman and D. R. Shklyar, Sov. JETP 35, 500 (1972).
12.
C. F. Kennel and F. Engelmann, Phys. Fluids 9, 2377 (1966).
http://dx.doi.org/10.1063/1.1761629
13.
J. H. Malmberg and J. S. deGrassie, Phys. Rev. Lett. 35, 577 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.577
14.
A. I. Neishtadt, Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series C 533 ( Kluwer, Dordrecht, 1999), p. 193.
15.
D. Nunn, J. Plasma Phys. 6, 291 (1971).
http://dx.doi.org/10.1017/S0022377800006061
16.
Y. Omura, Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota, J. Geophys. Res. 120, 9545, doi:10.1002/2015JA021563 (2015).
http://dx.doi.org/10.1002/2015JA021563
17.
V. D. Shapiro and R. Z. Sagdeev, Phys. Rep. 283, 4971 (1997).
http://dx.doi.org/10.1016/S0370-1573(96)00053-1
18.
D. Shklyar and H. Matsumoto, Sur. Geophys. 30, 55 (2009).
http://dx.doi.org/10.1007/s10712-009-9061-7
19.
V. V. Solovev and D. R. Shkliar, Sov. JETP 63, 272277 (1986).
20.
V. Y. Trakhtengerts and M. J. Rycroft, Whistler and Alfvén Mode Cyclotron Masers in Space ( Cambridge University Press, 2008).
21.
B. Van Compernolle, X. An, J. Bortnik, R. M. Thorne, P. Pribyl, and W. Gekelman, Phys. Rev. Lett. 114, 245002 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.245002
22.
A. A. Vedenov, E. Velikhov, and R. Sagdeev, Nucl. Fusion Suppl. 2, 465 (1962).
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962526
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962526
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962526
2016-09-08
2016-09-29

Abstract

We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962526.html;jsessionid=gcWJik_9fQu5leX8o5Yng2G_.x-aip-live-03?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962526&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962526&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962526'
Right1,Right2,Right3,