Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962566
1.
N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.240
2.
E. Fermi, J. Pasta, and S. Ulam, “ Studies of non-linear problems,” Los Alamos Science Lab Report No LA-1940, 1955.
3.
J. S. Russell, Proc. R. Soc. Edinburgh 11, 319 (1844).
4.
D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).
http://dx.doi.org/10.1080/14786449508620739
5.
R. Z. Sagdeev, Reviews of Plasma Physics ( Consultants Bureau, New York, 1966), Vol. 4.
6.
A. C. Scott, F. V. F. Chu, and D. W. Maclaughlin, Proc. IEEE 61, 1443 (1973).
http://dx.doi.org/10.1109/PROC.1973.9296
7.
G. B. Witham, Linear and Non-Linear Waves ( Wiley-Interscience, New York, 1974).
8.
V. I. Karpman, Nonlinear Waves in Dispersive Media ( Pergamon, Oxford, England, 1975).
9.
K. Lonngren and A. Scott, Solitons in Action ( Academic Press Inc, New York, 1978).
10.
G. L. Lamb, Jr., Elements of Soliton Theory ( Wiley, New York, 1980).
11.
G. Agarwal, Non-Linear Fiber Optics ( Academic Press, San Diego, 1995).
12.
R. Grimshaw, Non-Linear Waves in Fluids: Recent Advances in Modern Application ( Springer Verlag, 2005).
13.
N. Akhmediev and A. Ankiewiez, Dissipative Solitons: From Optics to Biology and Medicine ( Springer-Verlag, Berlin, 2010).
14.
H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.996
15.
H. Ikezi, R. J. Taylor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.11
16.
N. Hershkowitz, T. Romesser, and D. Montgomery, Phys. Rev. Lett. 29, 1586 (1972).
http://dx.doi.org/10.1103/PhysRevLett.29.1586
17.
M. Q. Tran, Phys. Scr. 20, 317 (1979).
http://dx.doi.org/10.1088/0031-8949/20/3-4/004
18.
Y. Nakamura, IEEE Trans. Plasma Sci. PS-10, 180 (1982).
http://dx.doi.org/10.1109/TPS.1982.4316165
19.
G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.275
20.
Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.2356
21.
P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).
http://dx.doi.org/10.1088/0031-8949/45/5/015
22.
A. Barkan, N. D' Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).
http://dx.doi.org/10.1016/0032-0633(95)00109-3
23.
Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1602
24.
S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.056402
25.
T. V. Losseva, S. I. Popel, and A. P. Golub, Plasma Phys. Rep. 38, 729 (2012).
http://dx.doi.org/10.1134/S1063780X12080181
26.
N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).
http://dx.doi.org/10.1016/0032-0633(90)90147-I
27.
A. A. Mamun and P. K. Shukla, J. Plasma Phys. 77, 437 (2011).
http://dx.doi.org/10.1017/S0022377810000589
28.
R. L. Merlino, J. Plasma Phys. 80, 773 (2014).
http://dx.doi.org/10.1017/S0022377814000312
29.
P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998).
http://dx.doi.org/10.1063/1.873073
30.
N. N. Rao, Phys. Scr. T75, 179 (1998).
http://dx.doi.org/10.1238/Physica.Topical.075a00179
31.
P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).
http://dx.doi.org/10.1088/1367-2630/5/1/317
32.
B. M. Veeresha, S. K. Tiwari, A. Sen, P. K. Kaw, and A. Das, Phys. Rev. E 81, 036407 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.036407
33.
S. Ghosh, M. R. Gupta, N. Chakrabarti, and M. Chaudhuri, Phys. Rev. E 83, 066406 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.066406
34.
A. A. Mamun, B. Eliasson, and P. K. Shukla, Phys. Lett. A 332, 412 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.10.012
35.
D. Samsonov, A. V. Ivlev, R. A. Quinn, G. Morfill, and S. Zhdanov, Phys. Rev. Lett. 88, 095004 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.095004
36.
P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw, Phys. Rev. Lett. 101, 065006 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.065006
37.
P. Harvey, C. Durniak, D. Samsonov, and G. Morfill, Phys. Rev. E 81, 057401 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.057401
38.
S. K. Sharma, A. Boruah, and H. Bailung, Phys. Rev. E 89, 013110 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.013110
39.
A. Boruah, S. K. Sharma, Y. Nakamura, and H. Bailung, Phys. Plasmas 22, 093706 (2015).
http://dx.doi.org/10.1063/1.4931735
40.
M. Akbari-Moghanjoughi and P. K. Shukla, Phys. Rev. E 86, 066401 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.066401
41.
H. Ikezi, Phys. Fluids 29, 1764 (1986).
http://dx.doi.org/10.1063/1.865653
42.
J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.4009
43.
H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.652
44.
S. K. Sharma, R. Kalita, Y. Nakamura, and H. Bailung, Plasma Sources Sci. Technol. 21, 045002 (2012).
http://dx.doi.org/10.1088/0963-0252/21/4/045002
45.
S. Ichimaru and S. Tanaka, Phys. Rev. Lett. 56, 2815 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2815
46.
J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3137
47.
S. K. Sharma, A. Boruah, Y. Nakamura, and H. Bailung, Phys. Plasmas 23, 053702 (2016).
http://dx.doi.org/10.1063/1.4950832
48.
J. Heinrich, S. H. Kim, and R. L. Merlino, Phys. Rev. Lett. 103, 115002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.115002
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962566
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962566
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962566
2016-09-15
2016-09-30

Abstract

The excitation and propagation of low frequency dust acoustic multi-solitons are investigated in an unmagnetized strongly coupled dusty plasma. A floating 2D dusty medium is produced in an RF discharge Ar plasma with silica micro-particles. Dust acoustic perturbations are excited by applying a negative sinusoidal pulse of frequency 1–2 Hz and amplitude 4–20 V to an exciter grid. An initial large amplitude dust density compression breaks into a number of solitary pulses which are identified as dust acoustic solitons. The observed multi-soliton evolution is compared with numerical simulations of modified Korteweg de Vries (KdV)-Burger equation. The characteristics of the generated solitons are in good agreement with the theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962566.html;jsessionid=CQ9rCBqsbQvZQiVFkUTbTAEi.x-aip-live-03?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962566&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962566&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962566'
Right1,Right2,Right3,