Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
ITER Physics Basis Editors, “ Chapter 4: Power and particle control,” Nucl. Fusion 39, 2391 (1999).
A. G. McLean, A. W. Leonard, M. A. Makowski, M. Groth, S. L. Allen, J. A. Boedo, B. D. Bray, A. R. Briesemeister, T. N. Carlstrom, D. Eldon, M. E. Fenstermacher, D. N. Hill, C. J. Lasnier, C. Liu, T. H. Osborne, T. W. Petrie, V. A. Soukhanovskii, P. C. Stangeby, C. Tsui, E. A. Unterberg, and J. G. Watkins, J. Nucl. Mater. 463, 533 (2015).
S. Potzel, M. Wischmeier, M. Bernert, R. Dux, H. W. Muller, A. Scarabosio, and ASDEX Upgrade Team, Nucl. Fusion 54, 013001 (2014).
D. Carralero, G. Birkenmeier, H. W. Muller, P. Manz, P. deMarne, S. H. Muller, F. Reimold, U. Stroth, M. Wischmeier, E. Wolfrum, and ASDEX Upgrade Team, Nucl. Fusion 54, 123005 (2014).
H. J. Sun, E. Wolfrum, T. Eich, B. Kurzan, S. Potzel, U. Stroth, and ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 57, 125011 (2015).
I. H. Hutchinson, Nucl. Fusion 34, 1337 (1994).
S. I. Krasheninnikov, Phys. Plasmas 4, 3741 (1997).
R. D. Smirnov, A. S. Kukushkin, S. I. Krasheninnikov, and A. Yu. Pigarov, Phys. Plasmas 23, 012503 (2016).
B. B. Kadomtsev and A. V. Nedospasov, J. Nucl. Energy, Part C 1, 230 (1960).
H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
B. A. Carreras, P. W. Gaffney, H. R. Hicks, and J. D. Callen, Phys. Fluids 25, 1231 (1982).
A. B. Hassam and J. F. Drake, Phys. Fluids 26, 133 (1983).
B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma Physics, edited by M. A. Leontovich ( Consultants Bureau, New York, 1970), Vol. 5, p. 249.
G. M. Staebler and F. L. Hinton, Nucl. Fusion 29, 1820 (1989).
A. V. Nedospasov, V. G. Petrov, and G. N. Fidel'man, Nucl. Fusion 25, 21 (1985).
H. Berk, D. D. Ryutov, and Yu. A. Tsidulko, Phys. Fluids B 3, 1346 (1991).

Data & Media loading...


Article metrics loading...



The asymmetry of inner and outer divertors, which cause the inner divertor to detach first, while the outer one is still attached, results in the large temperature difference between the vicinities of inner and outer targets and the onset of large electric potential drop through detached plasma of the inner divertor. A large potential drop along with the inhomogeneity of the resistivity of detached plasma across the divertor leg drives the current convective instability in the inner divertor and subsequent fluctuations of radiation loss similar to that observed in experiments. The estimates of the frequency of plasma parameter fluctuations due to the current convective instability are in a reasonable agreement with experimental data. Once the outer divertor also detaches, the temperature difference between the vicinities of inner and outer targets disappears, and the driving force for the current convective instability, and resulting oscillations of radiation loss, vanishes. This feature is indeed observed in experiments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd