Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962572
1.
P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
2.
F. Quere, Nat. Phys. 5, 93 (2009).
http://dx.doi.org/10.1038/nphys1191
3.
M. Nisoli and G. Sansone, Prog. Quantum Electron. 33, 17 (2009).
http://dx.doi.org/10.1016/j.pquantelec.2008.10.004
4.
P. Amendt, D. C. Eder, and S. C. Wilks, Phys. Rev. Lett. 66, 2589 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2589
5.
Y. I. Salamin, Z. Harman, and C. H. Keitel, Phys. Rev. Lett. 100, 155004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155004
6.
R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752 (2000).
http://dx.doi.org/10.1038/35021099
7.
A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1177
8.
W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
9.
X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).
http://dx.doi.org/10.1038/ncomms2988
10.
H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.165002
11.
C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi, W. Lu, K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock, J. S. Ross, L. O. Silva, and D. H. Froula, Phys. Rev. Lett. 105, 105003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.105003
12.
P. Muggli, B. E. Blue, C. E. Clayton, S. Deng, F.-J. Decker, M. J. Hogan, C. Huang, R. Iverson, C. Joshi, T. C. Katsouleas, S. Lee, W. Lu, K. A. Marsh, W. B. Mori, C. L. O'Connell, P. Raimondi, R. Siemann, and D. Walz, Phys. Rev. Lett. 93, 014802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.014802
13.
M. J. Hogan, C. D. Barnes, C. E. Clayton, F. J. Decker, S. Deng, P. Emma, C. Huang, R. H. Iverson, D. K. Johnson, C. Joshi, T. Katsouleas, P. Krejcik, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, C. L. O'Connell, E. Oz, R. H. Siemann, and D. Walz, Phys. Rev. Lett. 95, 054802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.054802
14.
I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, C. Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, E. Oz, R. H. Siemann, D. Walz, and M. Zhou, Nature 445, 741 (2007).
http://dx.doi.org/10.1038/nature05538
15.
T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, R. A. Smith, J. Marangos, and M. H. R. Hutchinson, Nature 386, 54 (1997).
http://dx.doi.org/10.1038/386054a0
16.
M. Murakami and K. Mima, Phys. Plasmas 16, 103108 (2009).
http://dx.doi.org/10.1063/1.3256183
17.
E. Boella, B. Peiretti Paradisi, A. D'Angola, L. O. Silva, and G. J. Coppa, Plasma Phys. 82, 905820110 (2016).
http://dx.doi.org/10.1017/S0022377816000179
18.
A. A. Andreev, P. V. Nickles, and K. Yu. Platonov, Phys. Plasmas 17, 023110 (2010).
http://dx.doi.org/10.1063/1.3309479
19.
I. Last and J. Jortner, Phys. Rev. A 64, 063201 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.063201
20.
T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, Phys. Rev. A 53, 3379 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.3379
21.
F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, and A. K. Kerman, Phys. Rev. E 51, 4833 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4833
22.
G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett. 78, 3314 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.3314
23.
K. P. Singh, J. Appl. Phys. 100, 044907 (2006).
http://dx.doi.org/10.1063/1.2234549
24.
K. P. Singh, Appl. Phys. Lett. 87, 254102 (2005).
http://dx.doi.org/10.1063/1.2149984
25.
D. N. Gupta, H. J. Jang, and H. Sukb, J. Appl. Phys. 105, 106110 (2009).
http://dx.doi.org/10.1063/1.3117524
26.
K. P. Singh and M. Kumar, Phys. Rev. Spec. Top.--Accel. Beams 14, 030401 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.030401
27.
D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, Phys. Lett. A 368, 402 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.04.030
28.
P. L. Fortin, M. Piche, and C. Varin, J. Phys. B: At., Mol. Opt. Phys. 43, 025401 (2010).
http://dx.doi.org/10.1088/0953-4075/43/2/025401
29.
M. Vaziri, M. Golshani, S. Sohaily, and A. Bahrampour, Phys. Plasmas 22, 033118 (2015).
http://dx.doi.org/10.1063/1.4916562
30.
K. P. Singh, V. Sajal, and D. N. Gupta, Laser Part. Beams 26, 597 (2008).
http://dx.doi.org/10.1017/S0263034608000669
31.
K. P. Singh, R. Arya, and A. K. Malik, Phys. Plasmas 22, 083105 (2015).
http://dx.doi.org/10.1063/1.4928091
32.
K. P. Singh, R. Arya, and A. K. Malik, J. Appl. Phys. 118, 104902 (2015).
http://dx.doi.org/10.1063/1.4930291
33.
A. D'Angola, E. Boella, and G. Coppa, Phys. Plasmas 21, 82116 (2014).
http://dx.doi.org/10.1063/1.4894109
34.
L.-W. Pi, S. X. Hu, and A. F. Starace, Phys. Plasmas 22, 093111 (2015).
http://dx.doi.org/10.1063/1.4930218
35.
L.-W. Zhu, Z.-M. Sheng, and M. Y. Yu, Phys. Plasmas 20, 113112 (2013).
http://dx.doi.org/10.1063/1.4835235
36.
M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, Nat. Phys. 12, 355 (2016).
http://dx.doi.org/10.1038/nphys3597
37.
G. Coppa, Math. Comput. Modell. 54, 2479 (2011).
http://dx.doi.org/10.1016/j.mcm.2011.06.005
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962572
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962572
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962572
2016-09-16
2016-09-29

Abstract

The spectrum of energy and angle of emittance of the electrons generated during ionization of neon ions , krypton ions , and argon ions by a laser pulse have been obtained for different values of laser frequency chirp and normalized laser pulse duration. The energy of the electron beam shifts to higher energy with the introduction of frequency chirp. The energy peak shifts towards lower energy with an increase in frequency chirp, and the electron beam becomes more quasi-monoenergetic. The energy peak shifts to higher energy with decreasing laser pulse duration due to increase in asymmetry of the pulse, however, the quasi-monoenergetic property of the electron beam decreases. We can obtain MeV, MeV/GeV, and GeV electron beams using neon, krypton, and argon gases as target. The scattering of the electrons decreases with decreasing laser pulse duration and increasing laser intensity. The energy peak is sharper and at higher energy for the ions located after laser focus than that for the ions located before laser focus for a tightly focused laser pulse.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962572.html;jsessionid=ksW1uzZzuKBEZaGan__EJY0K.x-aip-live-06?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962572&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962572&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962572'
Right1,Right2,Right3,