Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
F. Quere, Nat. Phys. 5, 93 (2009).
M. Nisoli and G. Sansone, Prog. Quantum Electron. 33, 17 (2009).
P. Amendt, D. C. Eder, and S. C. Wilks, Phys. Rev. Lett. 66, 2589 (1991).
Y. I. Salamin, Z. Harman, and C. H. Keitel, Phys. Rev. Lett. 100, 155004 (2008).
R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752 (2000).
A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).
W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).
H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi, W. Lu, K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock, J. S. Ross, L. O. Silva, and D. H. Froula, Phys. Rev. Lett. 105, 105003 (2010).
P. Muggli, B. E. Blue, C. E. Clayton, S. Deng, F.-J. Decker, M. J. Hogan, C. Huang, R. Iverson, C. Joshi, T. C. Katsouleas, S. Lee, W. Lu, K. A. Marsh, W. B. Mori, C. L. O'Connell, P. Raimondi, R. Siemann, and D. Walz, Phys. Rev. Lett. 93, 014802 (2004).
M. J. Hogan, C. D. Barnes, C. E. Clayton, F. J. Decker, S. Deng, P. Emma, C. Huang, R. H. Iverson, D. K. Johnson, C. Joshi, T. Katsouleas, P. Krejcik, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, C. L. O'Connell, E. Oz, R. H. Siemann, and D. Walz, Phys. Rev. Lett. 95, 054802 (2005).
I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, C. Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, E. Oz, R. H. Siemann, D. Walz, and M. Zhou, Nature 445, 741 (2007).
T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, R. A. Smith, J. Marangos, and M. H. R. Hutchinson, Nature 386, 54 (1997).
M. Murakami and K. Mima, Phys. Plasmas 16, 103108 (2009).
E. Boella, B. Peiretti Paradisi, A. D'Angola, L. O. Silva, and G. J. Coppa, Plasma Phys. 82, 905820110 (2016).
A. A. Andreev, P. V. Nickles, and K. Yu. Platonov, Phys. Plasmas 17, 023110 (2010).
I. Last and J. Jortner, Phys. Rev. A 64, 063201 (2001).
T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, Phys. Rev. A 53, 3379 (1996).
F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, and A. K. Kerman, Phys. Rev. E 51, 4833 (1995).
G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett. 78, 3314 (1997).
K. P. Singh, J. Appl. Phys. 100, 044907 (2006).
K. P. Singh, Appl. Phys. Lett. 87, 254102 (2005).
D. N. Gupta, H. J. Jang, and H. Sukb, J. Appl. Phys. 105, 106110 (2009).
K. P. Singh and M. Kumar, Phys. Rev. Spec. Top.--Accel. Beams 14, 030401 (2011).
D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, Phys. Lett. A 368, 402 (2007).
P. L. Fortin, M. Piche, and C. Varin, J. Phys. B: At., Mol. Opt. Phys. 43, 025401 (2010).
M. Vaziri, M. Golshani, S. Sohaily, and A. Bahrampour, Phys. Plasmas 22, 033118 (2015).
K. P. Singh, V. Sajal, and D. N. Gupta, Laser Part. Beams 26, 597 (2008).
K. P. Singh, R. Arya, and A. K. Malik, Phys. Plasmas 22, 083105 (2015).
K. P. Singh, R. Arya, and A. K. Malik, J. Appl. Phys. 118, 104902 (2015).
A. D'Angola, E. Boella, and G. Coppa, Phys. Plasmas 21, 82116 (2014).
L.-W. Pi, S. X. Hu, and A. F. Starace, Phys. Plasmas 22, 093111 (2015).
L.-W. Zhu, Z.-M. Sheng, and M. Y. Yu, Phys. Plasmas 20, 113112 (2013).
M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, Nat. Phys. 12, 355 (2016).
G. Coppa, Math. Comput. Modell. 54, 2479 (2011).

Data & Media loading...


Article metrics loading...



The spectrum of energy and angle of emittance of the electrons generated during ionization of neon ions , krypton ions , and argon ions by a laser pulse have been obtained for different values of laser frequency chirp and normalized laser pulse duration. The energy of the electron beam shifts to higher energy with the introduction of frequency chirp. The energy peak shifts towards lower energy with an increase in frequency chirp, and the electron beam becomes more quasi-monoenergetic. The energy peak shifts to higher energy with decreasing laser pulse duration due to increase in asymmetry of the pulse, however, the quasi-monoenergetic property of the electron beam decreases. We can obtain MeV, MeV/GeV, and GeV electron beams using neon, krypton, and argon gases as target. The scattering of the electrons decreases with decreasing laser pulse duration and increasing laser intensity. The energy peak is sharper and at higher energy for the ions located after laser focus than that for the ions located before laser focus for a tightly focused laser pulse.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd