Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962573
1.
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles ( Institute of Physics Publishing, Bristol, 1988).
2.
C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation ( Adam Hilger, Bristol, CRC press, 2004).
3.
R. D. Ruth, IEEE Trans. Nucl. Sci. 30, 2669 (1983).
http://dx.doi.org/10.1109/TNS.1983.4332919
4.
K. Feng, in Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, edited by K. Feng ( Science Press, 1985), pp. 4258.
5.
K. Feng and M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems ( Springer-Verlag, 2010).
6.
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations ( Springer, New York, 2003).
7.
H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.035006
8.
H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009).
http://dx.doi.org/10.1063/1.3099055
9.
S. A. Chin, Phys. Rev. E 77, 066401 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066401
10.
H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, Phys. Plasmas 20, 084503 (2013).
http://dx.doi.org/10.1063/1.4818428
11.
Y. He, Y. Sun, J. Liu, and H. Qin, J. Comput. Phys. 281, 135 (2015).
http://dx.doi.org/10.1016/j.jcp.2014.10.032
12.
Y. He, Y. Sun, J. Liu, and H. Qin, J. Comput. Phys. 305, 172 (2016).
http://dx.doi.org/10.1016/j.jcp.2015.10.032
13.
R. Zhang, J. Liu, Y. Tang, H. Qin, J. Xiao, and B. Zhu, Phys. Plasmas 21, 032504 (2014).
http://dx.doi.org/10.1063/1.4867669
14.
R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He, and Y. Sun, Phys. Plasmas 22, 044501 (2015).
http://dx.doi.org/10.1063/1.4916570
15.
Y. He, Y. Sun, Z. Zhou, J. Liu, and H. Qin, e-print arXiv:1509.07794 (2015).
16.
J. Squire, H. Qin, and W. M. Tang, Phys. Plasmas 19, 084501 (2012).
http://dx.doi.org/10.1063/1.4742985
17.
E. Evstatiev and B. Shadwick, J. Comput. Phys. 245, 376 (2013).
http://dx.doi.org/10.1016/j.jcp.2013.03.006
18.
M. Kraus, “ Variational integrators in plasma physics,” Ph.D. thesis, Technical University of Munich, 2014.
19.
B. A. Shadwick, A. B. Stamm, and E. G. Evstatiev, Phys. Plasmas 21, 055708 (2014).
http://dx.doi.org/10.1063/1.4874338
20.
J. Xiao, J. Liu, H. Qin, and Z. Yu, Phys. Plasmas 20, 102517 (2013).
http://dx.doi.org/10.1063/1.4826218
21.
J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, and Y. Sun, Phys. Plasmas 22, 112504 (2015).
http://dx.doi.org/10.1063/1.4935904
22.
H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. W. Burby, L. Ellison, and Y. Zhou, Nucl. Fusion 56, 014001 (2016).
http://dx.doi.org/10.1088/0029-5515/56/1/014001
23.
Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang, and J. Liu, Phys. Plasmas 22, 124503 (2015).
http://dx.doi.org/10.1063/1.4938034
24.
J. E. Marsden and A. Weinstein, Physica D 4, 394 (1982).
http://dx.doi.org/10.1016/0167-2789(82)90043-4
25.
J. C. Nedelec, Numer. Math. 35, 315 (1980).
http://dx.doi.org/10.1007/BF01396415
26.
D. N. Arnold and G. Awanou, Math. Comput. 83, 1551 (2014).
http://dx.doi.org/10.1090/S0025-5718-2013-02783-4
27.
D. N. Arnold and G. Awanou, Found. Comput. Math. 11, 337344 (2011).
http://dx.doi.org/10.1007/s10208-011-9087-3
28.
R. I. McLachlan and G. R. W. Quispel, Acta Numer. 11, 341 (2002).
http://dx.doi.org/10.1017/S0962492902000053
29.
P. J. Olver, Applications of Lie Groups to Differential Equations ( Springer-Verlag, New York, 1993).
30.
P. J. Morrison, Phys. Lett. A 80, 383 (1980).
http://dx.doi.org/10.1016/0375-9601(80)90776-8
31.
P. J. Morrison, Phys. Plasmas 20, 012104 (2013).
http://dx.doi.org/10.1063/1.4774063
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962573
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962573
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962573
2016-09-16
2016-09-26

Abstract

In this paper, we study the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein bracket. We develop Hamiltonian particle-in-cell methods for this system by employing finite element methods in space and splitting methods in time. In order to derive the semi-discrete system that possesses a discrete non-canonical Poisson structure, we present a criterion for choosing the appropriate finite element spaces. It is confirmed that some conforming elements, e.g., Nédélec's mixed elements, satisfy this requirement. When the Hamiltonian splitting method is used to discretize this semi-discrete system in time, the resulting algorithm is explicit and preserves the discrete Poisson structure. The structure-preserving nature of the algorithm ensures accuracy and fidelity of the numerical simulations over long time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962573.html;jsessionid=8RuP987PSdHvV1T4CH8AFWFi.x-aip-live-02?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962573&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962573&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962573'
Right1,Right2,Right3,