Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962574
1.
A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Rev. Lett. 81, 3659 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3659
2.
A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Rev. Lett. 84, 1451 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1451
3.
A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Plasmas 7, 544 (2000).
http://dx.doi.org/10.1063/1.873840
4.
A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Plasmas 7, 1397 (2000).
http://dx.doi.org/10.1063/1.873957
5.
D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Rev. Lett. 101, 085001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.085001
6.
D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Plasmas 15, 122304 (2008).
http://dx.doi.org/10.1063/1.3023155
7.
D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Rev. Lett. 101, 035003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.035003
8.
W. Gekelman, P. Pribyl, Z. Lucky, M. Drandell, D. Leneman, J. Maggs, S. Vincena, B. Van Compernolle, S. K. P. Tripathi, G. Morales, T. A. Carter, Y. Wang, and T. DeHaas, Rev. Sci. Instrum. 87, 025105 (2016).
http://dx.doi.org/10.1063/1.4941079
9.
J. R. Peñano, G. J. Morales, and J. E. Maggs, Phys. Plasmas 7, 144 (2000).
http://dx.doi.org/10.1063/1.873789
10.
M. Shi, D. C. Pace, G. J. Morales, J. E. Maggs, and T. A. Carter, Phys. Plasmas 16, 062306 (2009).
http://dx.doi.org/10.1063/1.3147863
11.
J. E. Maggs and G. J. Morales, Plasma Phys. Controlled Fusion 54, 124041 (2012).
http://dx.doi.org/10.1088/0741-3335/54/12/124041
12.
J. E. Maggs and G. J. Morales Plasma Phys., Controlled Fusion 55, 085015 (2013).
http://dx.doi.org/10.1088/0741-3335/55/8/085015
13.
J. E. Maggs, T. L. Rhodes, and G. J. Morales, Plasma Phys. Controlled Fusion 57, 045004 (2015).
http://dx.doi.org/10.1088/0741-3335/57/4/045004
14.
B. Van Compernolle, W. Gekelman, P. Pribyl, and C. Cooper, Phys. Plasmas 18, 123501 (2011).
http://dx.doi.org/10.1063/1.3671909
15.
B. Van Compernolle, G. J. Morales, J. E. Maggs, and R. D. Sydora, Phys. Rev. E 91, 031102 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.031102
16.
P. A. Politzer, Phys. Rev. Lett. 84, 1192 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1192
17.
P. A. Politzer, M. E. Austin, M. Gilmore, G. R. McKee, T. L. Rhodes, C. X. Xu, E. J. Doyle, T. E. Evans, and R. Moyere, Phys. Plasmas 9, 1962 (2002).
http://dx.doi.org/10.1063/1.1452730
18.
V. Antoni, V. Carbone, R. Cavazzana, G. Regnoli, N. Vianello, E. Spada, L. Fattorini, E. Martines, G. Sirianni, M. Spolaore, l. Tramontin, and P. Velti, Phys. Rev. Lett. 87, 045001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.045001
19.
L. Garcia, B. A. Carreras, and D. E. Newman, Phys. Plasmas 9, 841 (2002).
http://dx.doi.org/10.1063/1.1455630
20.
P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.381
21.
S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich ( Consultants Bureau, New York, 1965), Vol. 1, p. 205.
22.
J. D. Huba, NRL Plasma Formulary ( Naval Research Laboratory, Washington, DC, 2007), p. 55.
23.
P. Guio and H. L. Pecseli, Phys. Rev. E 93, 043204 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.043204
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962574
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962574
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962574
2016-09-16
2016-10-01

Abstract

A theoretical and numerical modeling study is made of a novel heating configuration recently implemented in the Large Plasma Device at the University of California, Los Angeles. The injection of an electron beam from a masked cathode into a magnetized plasma results in a hollow, cylindrical filament of elevated temperature. The hot cylindrical ring has an axial extent that is about one-thousand times larger than its thickness, and the peak temperature can be ten times larger than that of the surrounding plasma. The simultaneous positive and negative radial pressure gradients provide an ideal platform for the investigation of transport phenomena of contemporary interest, including avalanches [Van Compernolle ., Phys. Rev. E , 031102 (2015)] and nonlocal transport. The present study delineates both the parameter regimes achievable by classical transport and the linear stability of the self-consistent profiles, including temperature and density gradients. An avalanche model is developed based on the self-consistent evolution of drift-wave eigenfunctions in nonlinearly modified profiles of electron temperature and plasma density.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962574.html;jsessionid=lvWvDEemt3QZ-WTnp18MfIOG.x-aip-live-02?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962574&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962574&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962574'
Right1,Right2,Right3,