Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962684
1.
M. D. Knudson, M. P. Desjarlais, R. W. Lemke, T. R. Mattsson, M. French, N. Nettelmann, and R. Redmer, Phys. Rev. Lett. 108, 091102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.091102
2.
D. C. Swift, J. H. Eggert, D. G. Hicks, S. Hamel, K. Caspersen, E. Schwegler, G. W. Collins, N. Nettelmann, and G. J. Ackland, Astrophys. J. 744, 59 (2012).
http://dx.doi.org/10.1088/0004-637X/744/1/59
3.
J. Lindl, O. Landen, J. Edwards, E. Moses, and N. Team, Phys. Plasmas 21, 020501 (2014).
http://dx.doi.org/10.1063/1.4865400
4.
G. Huser, N. Ozaki, T. Sano, Y. Sakawa, K. Miyanishi, G. Salin, Y. Asaumi, M. Kita, Y. Kondo, K. Nakatsuka, H. Uranishi, T. Yang, N. Yokoyama, D. Galmiche, and R. Kodama, Phys. Plasmas 20, 122703 (2013).
http://dx.doi.org/10.1063/1.4840375
5.
S. Hamel, L. X. Benedict, P. M. Celliers, M. A. Barrios, T. R. Boehly, G. W. Collins, T. Doppner, J. H. Eggert, D. R. Farley, D. G. Hicks, J. L. Kline, A. Lazicki, S. LePape, A. J. Mackinnon, J. D. Moody, H. F. Robey, E. Schwegler, and P. A. Sterne, Phys. Rev. B 86, 094113 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.094113
6.
C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, and M. Parrinello, Science 283, 44 (1999).
http://dx.doi.org/10.1126/science.283.5398.44
7.
O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Doppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, Nature 506, 343 (2014).
http://dx.doi.org/10.1038/nature13008
8.
L. Collins, I. Kwon, J. Kress, N. Troullier, and D. Lynch, Phys. Rev. E 52, 6202 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.6202
9.
L. A. Collins, S. R. Bickham, J. D. Kress, S. Mazevet, T. J. Lenosky, N. J. Troullier, and W. Windl, Phys. Rev. B 63, 184110 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.184110
10.
G. Huser, V. Recoules, N. Ozaki, T. Sano, Y. Sakawa, G. Salin, B. Albertazzi, K. Miyanishi, and R. Kodama, Phys. Rev. E 92, 063108 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.063108
11.
S. Root, K. R. Cochrane, J. H. Carpenter, and T. R. Mattsson, Phys. Rev. B 87, 224102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.224102
12.
T. R. Dittrich, O. A. Hurricane, D. A. Callahan, E. L. Dewald, T. Doppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, J. L. Milovich, J. C. Moreno, P. K. Patel, H. S. Park, B. A. Remington, J. D. Salmonson, and J. L. Kline, Phys. Rev. Lett. 112, 055002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.055002
13.
H. S. Park, O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R. Dittrich, T. Doppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, P. K. Patel, B. A. Remington, H. F. Robey, J. D. Salmonson, and J. L. Kline, Phys. Rev. Lett. 112, 055001 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.055001
14.
Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, Phys. Rev. Lett. 111, 065501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.065501
15.
M. D. Knudson, J. R. Asay, and C. Deeney, J. Appl. Phys. 97, 073514 (2005).
http://dx.doi.org/10.1063/1.1863421
16.
D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, Phys. Rev. Lett. 102, 075503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.075503
17.
R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun, J. R. Patterson, R. E. Rudd, J. Biener, A. E. Lazicki, A. V. Hamza, J. Wang, T. Braun, L. X. Benedict, P. M. Celliers, and G. W. Collins, Nature 511, 330 (2014).
http://dx.doi.org/10.1038/nature13526
18.
Q. Xue, Z. Wang, S. Jiang, F. Wang, X. Ye, and J. Liu, Phys. Plasmas 21, 072709 (2014).
http://dx.doi.org/10.1063/1.4890851
19.
D. S. Clark, S. W. Haan, B. A. Hammel, J. D. Salmonson, D. A. Callahan, and R. P. J. Town, Phys. Plasmas 17, 052703 (2010).
http://dx.doi.org/10.1063/1.3403293
20.
R. J. Magyar, S. Root, K. Cochrane, T. R. Mattsson, and D. G. Flicker, Phys. Rev. B 91, 134109 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.134109
21.
D. G. Friend, H. Ingham, and J. F. Fly, J. Phys. Chem. Ref. Data 20, 275 (1991).
http://dx.doi.org/10.1063/1.555881
22.
Y. Zhang, C. Wang, F. Zheng, and P. Zhang, Phys. Rev. E 86, 061111 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061111
23.
R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, Phys. Fluids 31, 3059 (1988).
http://dx.doi.org/10.1063/1.866963
24.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
25.
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
26.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
D. J. Evans and B. L. Holian, J. Chem. Phys. 83, 4069 (1985).
http://dx.doi.org/10.1063/1.449071
28.
A. Becker, N. Nettelmann, B. Holst, and R. Redmer, Phys. Rev. B 88, 045122 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045122
29.
D. V. Minakov, P. R. Levashov, K. V. Khishchenko, and V. E. Fortov, J. Appl. Phys. 115, 223512 (2014).
http://dx.doi.org/10.1063/1.4882299
30.
G. E. Duvall and R. A. Graham, Rev. Mod. Phys. 49, 523 (1977).
http://dx.doi.org/10.1103/RevModPhys.49.523
31.
I. Baraffe, G. Chabrier, and T. Barman, Astron. Astrophys. 482, 315 (2008).
http://dx.doi.org/10.1051/0004-6361:20079321
32.
J. Fortney and N. Nettelmann, Space Sci. Rev. 152, 423 (2010).
http://dx.doi.org/10.1007/s11214-009-9582-x
33.
R. Redmer, T. R. Mattsson, N. Nettelmann, and M. French, Icarus 211, 798 (2011).
http://dx.doi.org/10.1016/j.icarus.2010.08.008
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962684
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962684
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962684
2016-09-16
2016-09-27

Abstract

The equation of state of warm dense ethane is obtained using quantum molecular dynamics simulations based on finite-temperature density functional theory for densities from 0.1 to 3.1 and temperatures from 0.1 eV to 5.17 eV. The calculated pressure and internal energy are fitted with cubic polynomials in terms of density and temperature. Specific density-temperature-pressure tracks such as the principal and double shock Hugoniot curves along with release isentropes are predicted which are fundamental for the analysis and interpretation of high-pressure experiments. The principal and double shock Hugoniot curves are in agreement with the experimental data from the Sandia Z-Machine [Magyar ., Phys. Rev. B , 134109 (2015)].

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962684.html;jsessionid=HZdi1N84jLD3wWJde2Na1pPg.x-aip-live-03?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962684&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962684&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962684'
Right1,Right2,Right3,