Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/23/9/10.1063/1.4962997
1.
L. Chen and F. Zonca, Rev. Mod. Phys. 88, 015008 (2016).
http://dx.doi.org/10.1103/RevModPhys.88.015008
2.
Y. I. Kolesnichenko, At. Energ. 23, 289 (1967).
http://dx.doi.org/10.1007/BF01120459
3.
A. Mikhailovskii, Zh. Eksp. Teor. Fiz 68, 1772 (1975).
4.
M. Rosenbluth and P. Rutherford, Phys. Rev. Lett. 34, 1428 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.1428
5.
L. Chen, Phys. Plasmas 1, 1519 (1994).
http://dx.doi.org/10.1063/1.870702
6.
C. Cheng, L. Chen, and M. Chance, Ann. Phys. 161, 21 (1985).
http://dx.doi.org/10.1016/0003-4916(85)90335-5
7.
G. Y. Fu and J. W. Van Dam, Phys. Fluids B 1, 1949 (1989).
http://dx.doi.org/10.1063/1.859057
8.
L. Chen and F. Zonca, Phys. Plasmas 20, 055402 (2013).
http://dx.doi.org/10.1063/1.4804628
9.
F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, G. Vlad, and X. Wang, New J. Phys. 17, 013052 (2015).
http://dx.doi.org/10.1088/1367-2630/17/1/013052
10.
T. O'Neil, Phys. Fluids 8, 2255 (1965).
http://dx.doi.org/10.1063/1.1761193
11.
H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2226 (1990).
http://dx.doi.org/10.1063/1.859404
12.
H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2246 (1990).
http://dx.doi.org/10.1063/1.859406
13.
J. Zhu, Z. Ma, and G. Fu, Nucl. Fusion 54, 123020 (2014).
http://dx.doi.org/10.1088/0029-5515/54/12/123020
14.
L. Chen and F. Zonca, Phys. Rev. Lett. 109, 145002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.145002
15.
Y. Todo, H. Berk, and B. Breizman, Nucl. Fusion 50, 084016 (2010).
http://dx.doi.org/10.1088/0029-5515/50/8/084016
16.
Z. Wang, Z. Lin, and I. Holod, “ Generation of zonal fields by toroidal Alfvén eigenmode” (submitted).
17.
M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.724
18.
L. Chen, Z. Qiu, and F. Zonca, Europhys. Lett. 107, 15003 (2014).
http://dx.doi.org/10.1209/0295-5075/107/15003
19.
Z. Qiu, L. Chen, and F. Zonca, Nucl. Fusion 56, 106013 (2016).
http://dx.doi.org/10.1088/0029-5515/56/10/106013
20.
F. Zonca, L. Chen, S. Brigugulio, G. Fogaccia, A. Milovanov, Z. Qiu, X. Wang, and G. Vlad, Plasma Phys. Controlled Fusion 57, 014024 (2015).
http://dx.doi.org/10.1088/0741-3335/57/1/014024
21.
E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
http://dx.doi.org/10.1063/1.863762
22.
G. Fu and C. Z. Cheng, Phys. Fluids B 4, 3722 (1992).
http://dx.doi.org/10.1063/1.860328
23.
H. Biglari, F. Zonca, and L. Chen, Phys. Fluids B 4, 2385 (1992).
http://dx.doi.org/10.1063/1.860208
24.
Z. Qiu, L. Chen, and F. Zonca, Europhys. Lett. 101, 35001 (2013).
http://dx.doi.org/10.1209/0295-5075/101/35001
25.
L. Chen, Z. Lin, and R. White, Phys. Plasmas 7, 3129 (2000).
http://dx.doi.org/10.1063/1.874222
26.
F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, and G. Vlad, “ Theoretical aspects of collective mode excitations by energetic ions in Tokamaks,” in Joint Varenna Workshop, Italy (2000).
27.
L. Wang and T. S. Hahm, Phys. Plasmas 16, 082302 (2009).
http://dx.doi.org/10.1063/1.3195069
28.
Note that in Ref. 14, the fine structure of ZF is not considered, such that there is no term.
29.
Note that EP linear contribution to ZFZS may qualitatively change the expression of the neoclassical polarization,27 but detailed analysis of this effect is beyond the scope of this paper.
30.
Note that in deriving Equation (12), we assumed small EP drift orbit in the ideal region. The same equation can be obtained by assuming that EP response is dominated by the l = ±1 transit resonances, while no assumptions on EP drift orbit is needed.
31.
Note that the algebraic growth is obtained from Equation (13). However, as γL → 0, the present analysis is not valid anymore, and both wave-particle nonlinearity and wave-wave nonlinearity due to thermal plasma responses must be taken into account.
32.
Note that phase space wave-particle nonlinearities is not included in the present system yet,1,9 as anticipated in our comments following Equation (8).
http://aip.metastore.ingenta.com/content/aip/journal/pop/23/9/10.1063/1.4962997
Loading
/content/aip/journal/pop/23/9/10.1063/1.4962997
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/23/9/10.1063/1.4962997
2016-09-14
2016-10-01

Abstract

Generation of zonal flow (ZF) by energetic particle (EP) driven toroidal Alfvén eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that nonlinear resonant EP contribution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro-scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/23/9/1.4962997.html;jsessionid=7UstibKVJK8Gs2faSl9UtT_k.x-aip-live-02?itemId=/content/aip/journal/pop/23/9/10.1063/1.4962997&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/23/9/10.1063/1.4962997&pageURL=http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962997'
Right1,Right2,Right3,