Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. H. Rutherford, Phys. Fluids 16, 1903 (1973).
W. X. Qu and J. D. Callen, National Technical Information Service Document No. DE6008946, University of Wisconsin Plasma Report No. UWPR 85–5, 1985.
R. Carrera, R. D. Hazeltine, and M. Kotschenreuther, Phys. Fluids 29, 899 (1986).
Z. Chang, J. D. Callen, E. D. Fredrickson, R. V. Budny, C. C. Hegna, K. M. McGuire, M. C. ZarnStorff, and TFTR Group, Phys. Rev. Lett. 74, 4663 (1995).
A. Gude, S. Günter, S. Sesnic, and ASDEX-Upgrade Team, Nucl. Fusion 39, 127 (1999).
A. Gude, S. Günter, M. Maraschek, H. Zohm, and ASDEX-Upgrade Team, Nucl. Fusion 42, 833 (2002).
R. J. La Hayye and O. Sautor, Nucl. Fusion 38, 987 (1998).
H. Zohm, G. Gautenbein, A. Gude, S. Günter, F. Leuterer, M. Maraschek, J. P. Meskat, W. Suttrop, Q. Yu, ASDEX-Upgrade Team, and ECRH Group, Nucl. Fusion 41, 197 (2001).
K. J. Gibson, N. Barratt, I. Chapman, N. Conway, M. R. Dunstan, A. R. Field, L. Garzotti, A. Kirk, B. Lloyd, H. Meyer et al., Plasma Phys. Controlled Fusion 52, 124041 (2010).
R. Fitzpatrick, Phys. Plasmas 2, 825 (1995).
R. D. Hazeltine, P. Helander, and P. J. Catto, Phys. Plasmas 4, 2920 (1997).
Q. Yu, S. Gunter, and B. D. Scott, Phys. Plasmas 10, 797 (2003).
A. I. Smolyakov, A. Hirose, E. Lazzaro, J. B. Re, and J. D. Callen, Phys. Plasmas 2, 1581 (1995).
H. R. Wilson, J. W. Connor, R. J. Hastie, and C. C. Hegna, Phys Plasmas 3, 248 (1996).
K. Imada and H. R. Wilson, Plasma Phys. Controlled Fusion 51, 105010 (2009).
K. Imada and H. R. Wilson, Phys. Plasmas 19, 032120 (2012).
A. B. Mikhailovskii, Contrib. Plasma Phys. 43, 125 (2003).
A. Bergmann, E. Poli, and A. G. Peeters, Phys. Plasmas 12, 072501 (2005).
A. Bergmann, E. Poli, A. G. Peeters, S. D. Pinches, and E. Strumberger, Europhys. Conf. Abstr. 27A, P-3.130 (2003).
E. Poli, A. Bergmann, A. G. Peeters, L. C. Appel, and S. D. Pinches, Nucl. Fusion 45, 384 (2005).
B. H. Fong and T. S. Hahm, Phys. Plasmas 6, 188 (1999).
L. Wang and T. S. Hahm, Phys. Plasmas 16, 062309 (2009).
O. Sauter, R. J. Buttery, R. Felton, T. C. Hender, D. F. Howell, and Contributors to the EFDA-JET Workprogramme, Plasma Phys. Controlled Fusion 44, 1999 (2002).
H. Reimerdes, O. Sauter, T. Goodman, and A. Pochelon, Phys. Rev. Lett. 88, 105005 (2002).
R. J. Buttery, R. J. La Haye, P. Gohil, G. L. Jackson, H. Reimerdes, E. J. Strait, and DIII-D Team, Phys. Plasmas 15, 056115 (2008).
J. A. Snape, K. J. Gibson, T. O'Gorman, N. C. Barratt, K. Imada, H. R. Wilson, G. J. Tallents, I. T. Chapman, and MAST Team, Plasma Phys. Controlled Fusion 54, 085001 (2012).
F. L. Waelbroeck, Plasma Phys. Controlled Fusion 49, 905 (2007).
M. James, H. R. Wilson, and J. W. Connor, Plasma Phys. Controlled Fusion 52, 075008 (2010).
M. Siccinio, E. Poli, F. J. Casson, W. A. Hornsby, and A. G. Peeters, Phys. Plasmas 18, 122506 (2011).
A. Ishizawa, F. L. Waelbroeck, R. Fitzpatrick, W. Horton, and N. Nakajima, Phys. Plasmas 19, 72312 (2012).
R. D. Hazeltine and J. D. Meiss, Plasma Confinement ( Addison-Wesley, New York, 2003), p. 113.

Data & Media loading...


Article metrics loading...



The neoclassical polarization current, which can be generated by a time-dependent electric field resulting from magnetic island rotation, is believed to play an important role in the initial stage of the neoclassical tearing mode (NTM) evolution in tokamak plasmas. In the previous analytical description of the neoclassical polarization current contribution to the evolution of NTMs in the limit of low collision frequency (, is ion collision frequency, is the inverse aspect ratio, and is the island propagation frequency in the plasma rest frame), the width of magnetic islands has been assumed to be much larger than the finite-banana-width (FBW) of the trapped ions in order to solve the drift-kinetic equation of ions by using the perturbation method. In this paper, we introduce a new analytical approach to investigate the neoclassical polarization current contribution to the NTM evolution without the assumption of the large island width by solving the drift-kinetic equation in a so-called ion-banana-center coordinate system. The results show that, when the island width is comparable to the FBW of the thermal ion, the neoclassical polarization current term in the equation of the NTM evolution is much smaller than the previous analytical expression but matches well with the empirical anticipation commonly adopted in experiments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd