Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Bhattacharjee, R. L. Dewar, and D. A. Monticello, Phys. Rev. Lett. 45, 347 (1980).
J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
J. B. Taylor, Rev. Mod. Phys. 58, 751 (1986).
R. Paccagnella, Nucl. Fusion 56, 046010 (2016).
Z. Yoshida and R. L. Dewar, J. Phys. A: Math. Theor. 45, 365502 (2012).
R. L. Dewar, A. Bhattacharjee, R. M. Kulsrud, and A. M. Wright, Phys. Plasmas 20, 082103 (2013).
M. J. Hole, S. R. Hudson, and R. L. Dewar, J. Plasma Phys. 72, 1167 (2006).
A. Bhattacharjee and R. L. Dewar, Phys. Fluids 25, 887 (1982).
A. Bhattacharjee, R. L. Dewar, A. H. Glasser, M. S. Chance, and J. C. Wiley, Phys. Fluids 26, 526 (1983).
V. Antoni, D. Merlin, S. Ortolani, and R. Paccagnella, Nucl. Fusion 26, 1711 (1986).
E. Tassi, R. J. Hastie, and F. Porcelli, Phys. Plasmas 15, 052104 (2008).
R. Paccagnella, Phys. Plasmas 21, 032307 (2014).
D. Escande, R. Paccagnella, S. Cappello, C. Marchetto, and F. D'Angelo, Phys. Rev. Lett. 85, 3169 (2000).
K. Oki, A. Sanpei, H. Himura, and S. Masamune, Trans. Fusion Sci. Technol. 63, 386 (2013).
L. Marrelli, P. Martin, G. Spizzo, P. Franz, B. E. Chapman, D. Craig, J. S. Sarff, T. M. Biewer, S. C. Prager, and J. C. Reardon, Phys. Plasmas 9, 2868 (2002).
F. Auriemma, P. Zanca, W. F. Bergerson, B. E. Chapman, W. X. Ding, D. L. Brower, P. Franz, P. Innocente, R. Lorenzini, B. Momo, and D. Terranova, Plasma Phys. Controlled Fusion 53, 105006 (2011).
S. Ortolani and RFX Team, Plasma Phys. Controlled Fusion 48, B371 (2006).
R. Paccagnella, S. Ortolani, P. Zanca, A. Alfier, T. Bolzonella, L. Marrelli, M. E. Puiatti, G. Serianni, D. Terranova, M. Valisa et al., Phys. Rev. Lett. 97, 075001 (2006).
M. Cecconello, J.-A. Malmberg, E. Sallander, and J. R. Drake, Phys. Scr. 65, 69 (2002).
L. Frassinetti, P. R. Brunsell, J. R. Drake, S. Menmuir, and M. Cecconello, Phys. Plasmas 14, 112510 (2007).

Data & Media loading...


Article metrics loading...



In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee ., Phys. Rev. Lett. , 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the “distance” of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. , 1139 (1974); Rev. Mod. Phys. , 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion , 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion , 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd