1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nanoelectromechanical systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/76/6/10.1063/1.1927327
1.
1.M. L. Roukes, Phys. World 14, 25 (2001).
2.
2.A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996).
http://dx.doi.org/10.1063/1.117548
3.
3.D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
http://dx.doi.org/10.1063/1.124554
4.
4.R. H. Blick, M. L. Roukes, W. Wegscheider, and M. Bichler, Physica B 249–251, 784 (1998).
5.
5.Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, C. Zorman, M. Mehregany, and M. L. Roukes, Appl. Phys. Lett. 78, 162 (2001).
http://dx.doi.org/10.1063/1.1338959
6.
6.A. N. Cleland, M. Pophristic, and I. Ferguson, Appl. Phys. Lett. 79, 2070 (2001).
http://dx.doi.org/10.1063/1.1396633
7.
7.L. Sekaric et al., Appl. Phys. Lett. 81, 4455 (2002).
http://dx.doi.org/10.1063/1.1526941
8.
8.L. Sekaric, D. W. Carr, S. Evoy, J. M. Parpia, and H. G. Craighead, Sens. Actuators, A 101, 215 (2002).
http://dx.doi.org/10.1016/S0924-4247(02)00149-8
9.
9.X. M. H. Huang, C. Zorman, M. Mehregany, and M. L. Roukes, Nature (London) 421, 496 (2003).
http://dx.doi.org/10.1038/421496a
10.
10.K. L. Ekinci, Y. T. Yang, X. M. Huang, and M. L. Roukes, Appl. Phys. Lett. 81, 2253 (2002).
http://dx.doi.org/10.1063/1.1507833
11.
11.M. L. Roukes, Physica B 263–264, 1 (1999).
12.
12.K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84, 4469 (2004).
http://dx.doi.org/10.1063/1.1755417
13.
13.A. Cleland, Foundations of Nanomechanics (Springer, New York, 2003).
14.
14.M. F. Yu, G. J. Wagner, R. S. Ruoff, and M. J. Dyer, Phys. Rev. B 66, 073406 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073406
15.
15.A. Husain, J. Hone, H. W. C. Postma, X. M. H. Huang, T. Drake, M. Barbic, A. Scherer, and M. L. Roukes, Appl. Phys. Lett. 83, 1240 (2003).
http://dx.doi.org/10.1063/1.1601311
16.
16.V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London) 431, 284 (2004).
http://dx.doi.org/10.1038/nature02905
17.
17.J. Q. Broughton, C. A. Meli, P. Vashishta, and R. K. Kalia, Phys. Rev. B 56, 611 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.611
18.
18.R. Phillips, Crystals, Defects and Microstructures (Cambridge University Press, Cambridge, 2001).
19.
19.X. Li, T. Ono, Y. Wang, and M. Esashi, Appl. Phys. Lett. 83, 3081 (2003).
http://dx.doi.org/10.1063/1.1618369
20.
20.C. T.-C. Nguyen, L P. B. Katehi, and G. M. Rebeiz, Proc. IEEE 86, 1756 (1998).
http://dx.doi.org/10.1109/5.704281
21.
21.J. L. Garbini, K. J. Bruland, W. M. Dougherty, and J. A. Sidles, J. Appl. Phys. 80, 1951 (1996).
http://dx.doi.org/10.1063/1.363085
22.
22.K. J. Bruland, J. L. Garbini, W. M. Dougherty, and J. A. Sidles, J. Appl. Phys. 83, 3972 (1998).
http://dx.doi.org/10.1063/1.367152
23.
23.T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
http://dx.doi.org/10.1063/1.347347
24.
24.V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992).
25.
25.A. N. Cleland and M. L. Roukes, J. Appl. Phys. 92, 2758 (2002).
http://dx.doi.org/10.1063/1.1499745
26.
26.F. L. Walls and J. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 576 (1995).
http://dx.doi.org/10.1109/58.393101
27.
27.W. P. Robins, Phase Noise in Signal Sources (Peter Pelegrinus Ltd., London, 1982).
28.
28.A. H. Nayfeh and T. R. Mook, Nonlinear Oscillations (Wiley Interscience, New York, 1979).
29.
29.L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1959).
30.
30.H. A. C. Tilmans, M. Elwenspoek, and H. J. Flutiman, Sens. Actuators, A 30, 35 (1992).
http://dx.doi.org/10.1016/0924-4247(92)80194-8
31.
31.V. Kaajakari, T. Mattila, A. Oja, and H. Seppa, J. Microelectromech. Syst. 13, 715 (2004).
http://dx.doi.org/10.1109/JMEMS.2004.835771
32.
32.D. S. Greywall, B. Yurke, P. A. Busch, A. N. Pargellis, and R. L. Willett, Phys. Rev. Lett. 72, 2992 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2992
33.
33.K. L. Turner et al., Nature (London) 396, 149 (1998).
http://dx.doi.org/10.1038/24122
34.
34.D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 77, 1545 (2000).
http://dx.doi.org/10.1063/1.1308270
35.
35.D. V. Scheible, A. Erbe, and R. H. Blick, and G. Corso, Appl. Phys. Lett. 81, 1884 (2002).
http://dx.doi.org/10.1063/1.1506790
36.
36.R. Lifshitz and M. C. Cross, Phys. Rev. B 67, 134302 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.134302
37.
37.K. L. Ekinci, Y. T. Yang, and M. L. Roukes, J. Appl. Phys. 95, 2682 (2004).
http://dx.doi.org/10.1063/1.1642738
38.
38.J. R. Vig and Y. Kim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46,1558 (1999).
http://dx.doi.org/10.1109/58.808881
39.
39.K. Wang and C. T.-C. Nguyen, Proceedings, 1997 IEEE International Micro Electro Mechanical Systems Workshop, Nagoya, Japan, Jan. 26–30, 1997, pp. 2530.
40.
40.T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar, Appl. Phys. Lett. 71, 288 (1997).
http://dx.doi.org/10.1063/1.119522
41.
41.M. M. Midzor et al., J. Appl. Phys. 87, 6493 (2000).
http://dx.doi.org/10.1063/1.372748
42.
42.K. Kokubun, M. Hirata, M. Ono, H. Murakami, and Y. Toda, J. Vac. Sci. Technol. A 5, 2450 (1987).
http://dx.doi.org/10.1116/1.574869
43.
43.F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B 10, 19 (1992).
http://dx.doi.org/10.1116/1.586300
44.
44.K. Yum et al., J. Appl. Phys. 96, 3933 (2004).
http://dx.doi.org/10.1063/1.1787912
45.
45.R. B. Bhiladvala and Z. J. Wang, Phys. Rev. E 69, 036307 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036307
46.
46.L. D. Landau, Fluid Mechanics (Pergamon, Oxford, 1982).
47.
47.V. B. Braginsky, V. P. Mitrofanov, and V. I. Panov, Systems with Small Dissipation (The University of Chicago Press, Chicago, 1985).
48.
48.M. C. Cross and R. Lifshitz, Phys. Rev. B 64, 085324 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085324
49.
49.D. M. Photiadis and J. A. Judge, Appl. Phys. Lett. 85, 482 (2004).
http://dx.doi.org/10.1063/1.1773928
50.
50.H. Jiang, M.-F. Yu, B. Liu, and Y. Huang, Phys. Rev. Lett. 93, 185501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185501
51.
51.X. M. H. Huang, M. K. Prakash, C. A. Zorman, M. Mehregany, and M. L. Roukes, TRANSDUCERS ’03 Proceedings 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8–12, 2003.
52.
52.A. N. Cleland and M. L. Roukes, Sens. Actuators, A 72, 256 (1999).
http://dx.doi.org/10.1016/S0924-4247(98)00222-2
53.
53.K. C. Schwab, Appl. Phys. Lett. 80, 1276 (2002).
http://dx.doi.org/10.1063/1.1449533
54.
54.R. Lifshitz and M. L. Roukes, Phys. Rev. B 61, 5600 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5600
55.
55.A. B. Hutchinson, P. A. Truitt, K. C. Schwab, L. Sekaric, J. M. Parpia, H. G. Craighead, and J. E. Butler, Appl. Phys. Lett. 84, 972 (2004).
http://dx.doi.org/10.1063/1.1646213
56.
56.S. Evoy, A. Olkhovets, L. Sekaric, J. M. Parpia, H. G. Craighead, and D. W. Carr, Appl. Phys. Lett. 77, 2397 (2000).
http://dx.doi.org/10.1063/1.1316071
57.
57.K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, J. Microelectromech. Syst. 9, 117 (2000).
http://dx.doi.org/10.1109/84.825786
58.
58.K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, and D. Rugar, Proceedings Technical Digest of the 1998 Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 8–11, 1998 (Transducer Research Foundation, Cleveland, 1998).
59.
59.J. Yang, T. Ono, and M. Esashi, Appl. Phys. Lett. 77, 3860 (2000).
http://dx.doi.org/10.1063/1.1330225
60.
60.J. Yang, T. Ono, and M. Esashi, J. Vac. Sci. Technol. B 19, 551 (2001).
http://dx.doi.org/10.1116/1.1347040
61.
61.Y. Wang, J. A. Henry, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 85, 5736 (2004).
http://dx.doi.org/10.1063/1.1832735
62.
62.D. F. Mcguigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, J. Low Temp. Phys. 30, 621 1978.
http://dx.doi.org/10.1007/BF00116202
63.
63.R. N. Kleiman, G. Agnolet, and D. J. Bishop, Phys. Rev. Lett. 59, 2079 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2079
64.
64.T. Klistner and R. O. Pohl, Phys. Rev. B 36, 6551 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.6551
65.
65.William Duffy, Jr., J. Appl. Phys. 68, 5601 (1990).
http://dx.doi.org/10.1063/1.346971
66.
66.R. A. Buser and N. F. de Rooij, Sens. Actuators, A 21, 323 (1990).
http://dx.doi.org/10.1016/0924-4247(90)85064-B
67.
67.D. S. Greywall, B. Yurke, P. A. Busch, and S. C. Arney, Europhys. Lett. 34, 37 (1996).
http://dx.doi.org/10.1209/epl/i1996-00412-2
68.
68.R. E. Mihailovich and J. M. Parpia, Phys. Rev. Lett. 68, 3052 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3052
69.
69.M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science 304, 74 (2004).
http://dx.doi.org/10.1126/science.1094419
70.
70.H. Dai, Phys. World 13, 43 (2000).
71.
71.J. Chung, K.-H. Lee, J. Lee, and R. S. Ruoff, Langmuir 20, 3011 (2004).
72.
72.T. H. Lee and A. Hajimiri, IEEE J. Solid-State Circuits 35, 326 (2000).
http://dx.doi.org/10.1109/4.826814
73.
73.Y. K. Yong and J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 452 (1989).
http://dx.doi.org/10.1109/58.31783
74.
74.Y. K. Yong and J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 543 (1990).
http://dx.doi.org/10.1109/58.63111
75.
75.D. Enguang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 649 (2002).
76.
76.W. Gerlach, Naturwiss. 15, 15 (1927).
http://dx.doi.org/10.1007/BF01504873
77.
77.G. E. Uhlenbeck and S. Goudsmit, Phys. Rev. 34, 145 (1929).
http://dx.doi.org/10.1103/PhysRev.34.145
78.
78.D. S. Greywall, B. Yurke, P. A. Busch, A. N. Pargellis, and R. L. Willett, Phys. Rev. Lett. 72, 2992 (1992).
http://dx.doi.org/10.1103/PhysRevLett.72.2992
79.
79.W. C. Tang, T. C. H. Nguyen, M. W. Judy, and R. T. Howe, Sens. Actuators, A 21, 328 (1990).
http://dx.doi.org/10.1016/0924-4247(90)85065-C
80.
80.J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
http://dx.doi.org/10.1088/0960-1317/4/1/004
81.
81.M. Tortonese, R. C. Barret, and C. F. Quate, Appl. Phys. Lett. 62, 834 (1993).
http://dx.doi.org/10.1063/1.108593
82.
82.J. W. Wagner, Phys. Acoust. 19, 201 (1990).
83.
83.T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
http://dx.doi.org/10.1109/2944.748109
84.
84.T. R. Albrecht, P. Grütter, D. Rugar, and D. P. E. Smith, Ultramicroscopy 42, 1638 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90498-9
85.
85.D. W. Carr, L. Sekaric, and H. G. Craighead, J. Vac. Sci. Technol. B 16, 3821 (1998).
http://dx.doi.org/10.1116/1.590416
86.
86.D. W. Carr, S. Evoy, L. Sekaric, A. Olkhovets, J. M. Parpia, and H. G. Craighead, Appl. Phys. Lett. 77, 1545 (2000).
http://dx.doi.org/10.1063/1.1308270
87.
87.C. Meyer, H. Lorenz, and K. Karrai, Appl. Phys. Lett. 83, 2420 (2003).
http://dx.doi.org/10.1063/1.1608491
88.
88.B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, Opt. Lett. 29, 1182 (2004).
http://dx.doi.org/10.1364/OL.29.001182
89.
89.T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, Appl. Phys. Lett. 86, 013106 (2005).
http://dx.doi.org/10.1063/1.1843289
90.
90.E. Ollier, IEEE J. Sel. Top. Quantum Electron. 8, 155 (2002).
91.
91.S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, Appl. Phys. Lett. 78, 4071 (2001).
http://dx.doi.org/10.1063/1.1381574
92.
92.E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4014
93.
93.P. A. Truitt, J. Hertzberg, and K. C. Schwab, Bull. Am. Phys. Soc. 50, 1307 (2005).
94.
94.R. G. Knobel and A. N. Cleland, Nature (London) 424, 291 (2003).
http://dx.doi.org/10.1038/nature01773
95.
95.M. P. Blencowe, Proc. SPIE 5115, 64 (2003).
96.
96.M. P. Blencowe and M. N. Wybourne, Appl. Phys. Lett. 77, 3845 (2000).
http://dx.doi.org/10.1063/1.1331090
97.
97.R. G. Beck, M. A. Eriksson, and R. M. Westervelt, Appl. Phys. Lett. 73, 1149 (1998).
http://dx.doi.org/10.1063/1.122112
98.
98.R. Knobel and A. N. Cleland, Appl. Phys. Lett. 81, 2258 (2002).
http://dx.doi.org/10.1063/1.1507616
99.
99.H. X. Tang, X. M. H. Huang, M. L. Roukes, M. Bichler, and W. Wegscheider, Appl. Phys. Lett. 81, 3879 (2002).
http://dx.doi.org/10.1063/1.1516237
100.
100.I. Bargatin, E. B. Myers, J. Arlett, B. Gudlewski, and M. L. Roukes, Appl. Phys. Lett. 86, 133109 (2005).
http://dx.doi.org/10.1063/1.1896103
101.
101.M. F. Bocko, Rev. Sci. Instrum. 61, 3763 (1990).
http://dx.doi.org/10.1063/1.1141550
102.
102.T. W. Kenny et al., J. Vac. Sci. Technol. A 10, 2114 (1992).
http://dx.doi.org/10.1116/1.577991
103.
103.G. Nunes, Jr. and M. R. Freeman, Science 262, 1029 (1993).
104.
104.A. N. Cleland, J. S. Aldridge, D. C. Driscoll, and A. C. Gossard, Appl. Phys. Lett. 81, 1699 (2002).
http://dx.doi.org/10.1063/1.1497436
105.
105.A. N. Cleland and M. L. Roukes, Nature (London) 392, 160 (1998).
http://dx.doi.org/10.1038/32373
106.
106.L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, Appl. Phys. Lett. 80, 3617 (2002).
http://dx.doi.org/10.1063/1.1479209
107.
107.A. Erbe, H. Krömmer, A. Kraus, R. H. Blick, G. Corso, and K. Richter, Appl. Phys. Lett. 77, 3102 (2000).
http://dx.doi.org/10.1063/1.1324721
108.
108.M. L. Roukes and K. L. Ekinci, U. S. Patent 6,722,200 (20 April 2004).
109.
109.B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, J. Appl. Phys. 95, 3694 (2004).
http://dx.doi.org/10.1063/1.1650542
110.
110.N. V. Lavrik and P. G. Datskos, Appl. Phys. Lett. 82, 2697 (2003).
http://dx.doi.org/10.1063/1.1569050
111.
111.A. Gupta, D. Akin, and R. Bashir, Appl. Phys. Lett. 84, 1976 (2004).
http://dx.doi.org/10.1063/1.1667011
112.
112.T. S. Tighe, J. M. Worlock, and M. L. Roukes, Appl. Phys. Lett. 70, 2687 (1997).
http://dx.doi.org/10.1063/1.118994
113.
113.K. C. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature (London) 404, 974 (2000).
http://dx.doi.org/10.1038/35010065
114.
114.C. S. Yung, D. R. Schmidt, and A. N. Cleland, Appl. Phys. Lett. 81, 31 (2002).
http://dx.doi.org/10.1063/1.1491300
115.
115.W. Fon et al., Phys. Rev. B 66, 045302 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.045302
116.
116.M. Blencowe, Phys. Rep. 395, 159 (2004).
http://dx.doi.org/10.1016/j.physrep.2003.12.005
117.
117.C. Lu, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, London, 1984).
118.
118.S. S. Narine and A. J. Slavin, J. Vac. Sci. Technol. A 16, 1857 (1998).
http://dx.doi.org/10.1116/1.581118
119.
119.M. Thompson and D. C. Stone, Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization (Wiley, New York, 1997).
120.
120.T. Thundat, E. A. Wachter, S. L. Sharp, and R. J. Warmack, Appl. Phys. Lett. 66, 1695 (1995).
http://dx.doi.org/10.1063/1.113896
121.
121.B. Ilic et al., Appl. Phys. Lett. 77, 450 (2000).
http://dx.doi.org/10.1063/1.127006
122.
122.Z. J. Davis et al., J. Vac. Sci. Technol. B 18, 612 (2000).
http://dx.doi.org/10.1116/1.591247
123.
123.The SI defines as the mass of the atom.
124.
124.W. K. Hibert, X. L. Feng, and M. L. Roukes, Am. Phys. Soc. 50, 1132 (2005).
125.
125.E. de Hoffmann and V. Stroobant, Mass Spectrometry Principles and Applications (Wiley, New York, 2002).
126.
126.R. P. Feynman, Proceeding of American Physical Society Meeting, Pasadena, CA, December 29, 1959 (originally published in Caltech’s Engineering and Science magazine, Feb. 1960);
126.reprinted as R. P. Feynman, J. Microelectromech. Syst. 2, 1 (1993).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/76/6/10.1063/1.1927327
Loading
/content/aip/journal/rsi/76/6/10.1063/1.1927327
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/76/6/10.1063/1.1927327
2005-05-26
2015-08-03

Abstract

Nanoelectromechanical systems(NEMS) are drawing interest from both technical and scientific communities. These are electromechanical systems, much like microelectromechanical systems, mostly operated in their resonant modes with dimensions in the deep submicron. In this size regime, they come with extremely high fundamental resonance frequencies, diminished active masses,and tolerable force constants; the quality factors of resonance are in the range —significantly higher than those of electrical resonant circuits. These attributes collectively make NEMS suitable for a multitude of technological applications such as ultrafast sensors, actuators, and signal processing components. Experimentally, NEMS are expected to open up investigations of phonon mediated mechanical processes and of the quantum behavior of mesoscopic mechanical systems. However, there still exist fundamental and technological challenges to NEMS optimization. In this review we shall provide a balanced introduction to NEMS by discussing the prospects and challenges in this rapidly developing field and outline an exciting emerging application, nanoelectromechanical mass detection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/76/6/1.1927327.html;jsessionid=27f7t8mjjrvfm.x-aip-live-06?itemId=/content/aip/journal/rsi/76/6/10.1063/1.1927327&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanoelectromechanical systems
http://aip.metastore.ingenta.com/content/aip/journal/rsi/76/6/10.1063/1.1927327
10.1063/1.1927327
SEARCH_EXPAND_ITEM