1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Implementing both short- and long-working-distance optical trappings into a commercial microscope
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/77/11/10.1063/1.2400023
1.
1.A. Ashkin, Phys. Rev. Lett.0031-9007 24, 156 (1970).
http://dx.doi.org/10.1103/PhysRevLett.24.156
2.
2.G. Roosen, thesis, Université Paris XI, 1978.
3.
3.G. Roosen and C. Imbert, Phys. Lett.0375-9601 59A, 6 (1976).
http://dx.doi.org/10.1016/0375-9601(76)90333-9
4.
4.G. Roosen, Opt. Commun.0030-4018 21, 189 (1977).
http://dx.doi.org/10.1016/0030-4018(77)90107-9
5.
5.T. N. Buican, D. L. Neagley, W. C. Morrison, and B. D. Upham, Proc. SPIE0277-786X 1063, 190 (1989).
6.
6.R. Dimova, B. Pouligny, and C. Dietrich, Biophys. J.0006-3495 79, 340 (2000).
7.
7.C. Dietrich, M. I. Angelova, and B. Pouligny, J. Phys. II1155-4312 7, 1651 (1997).
http://dx.doi.org/10.1051/jp2:1997208
8.
8.P. J. Rodrigo, V. Ricardo Daria, and J. Glückstad, Opt. Lett.0146-9592 29, 2270 (2004).
http://dx.doi.org/10.1364/OL.29.002270
9.
9.A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett.0146-9592 11, 288 (1986).
10.
10.H. Felgner, O. Muller, and M. Schliwa, Appl. Opt.0003-6935 34, 977 (1995).
11.
11.W. H. Wright, G. J. Sonek and M. W. Berns, Appl. Opt.0003-6935 33, 1735 (1994).
12.
12.D. G. Grier, Nature (London)0028-0836 424, 810 (2003).
http://dx.doi.org/10.1038/nature01935
13.
13.R. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, Appl. Opt.0003-6935 41, 2318 (2002).
14.
14.M. I. Angelova and B. Pouligny, J. Opt. A, Pure Appl. Opt.1464-4258 2, 261 (1993).
15.
15.A. Rohrbach and E. K. H. Stelzer, Appl. Opt.0003-6935 41, 2494 (2002).
16.
16.S. M. Block, in Noninvasive Techniques in Cell Biology (Wiley-Liss, New York, 1990), p. 375.
17.
17.G. Roosen, B. Delaunay and C. Imbert, J. Opt. (Paris)0150-536X 8, 181 (1977).
http://dx.doi.org/10.1088/0150-536X/8/3/005
18.
18.T. C. Bakker Schut, G. Hesselink, B. G. de Groot and J. Greve, Cytometry0196-4763 12, 479 (1991).
http://dx.doi.org/10.1002/cyto.990120603
19.
19.K. F. Ren, G. Gréhan, and G. Gouesbet, Opt. Commun.0030-4018 108, 343 (1994).
http://dx.doi.org/10.1016/0030-4018(94)90673-4
20.
20.A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett.0003-6951 19, 283 (1971).
http://dx.doi.org/10.1063/1.1653919
21.
21.H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett.0003-6951 60, 310 (1992).
http://dx.doi.org/10.1063/1.106695
22.
22.H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, J. Appl. Phys.0021-8979 70, 3829 (1991).
http://dx.doi.org/10.1063/1.350344
23.
23.K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J.0006-3495 77, 2856 (1999).
24.
24.E. Fällman and O. Axner, Appl. Opt.0003-6935 42, 3915 (2003).
25.
25.J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, 3rd ed. (Martinus Nijhoff, The Hague, 1983).
26.
26.F. Gittes and C. Schmidt, Opt. Lett.0146-9592 23, 7 (1998).
27.
27.K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, Rev. Sci. Instrum.0034-6748 77, 063106 (2006).
http://dx.doi.org/10.1063/1.2204589
28.
28.A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A0740-3232 18, 839 (2001).
29.
29.P. C. Ke and M. Gu, J. Mod. Opt.0950-0340 45, 2159 (1998).
http://dx.doi.org/10.1080/095003498150637
30.
30.X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, X. H. Han, and D. Z. Zhang, Chin. Phys.1009-1963 9, 824 (2000).
31.
31.R. Dimova, H. Polaert, and B. Pouligny, in Scattering of Shaped Light Beams and Applications, edited by G. Gouesbet and G. Grýhan (Research Signpost, India, 2000), p. 45,
31.this work is available for download at http://www.mpikg.mpg.de/th/people/dimova/publications
32.
32.E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J.0006-3495 84, 1308 (2003).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/77/11/10.1063/1.2400023
Loading
/content/aip/journal/rsi/77/11/10.1063/1.2400023
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/77/11/10.1063/1.2400023
2006-11-22
2014-08-30

Abstract

Optical tweezers are now a widespread tool based on three-dimensional trapping by a tightly focused single laser beam. This configuration only works with large numerical aperture and short-working-distance (SWD) objectives, restricting optical manipulation to the high magnification end of the microscope nosepiece. Certain applications of optical trapping demand long-working distances (LWDs) at moderate magnification, imposing a more complex two-beam trapping configuration. In this article, we describe a complete setup that incorporates both SWD and LWD optical trapping functionalities into a single Axiovert 200M Zeiss microscope. We evaluate the performance of the setup in both trapping modes with latex particles, either fluorescent or not, of different sizes, in the range. We provide practical information allowing for optimal configuration of the two-beam geometry, in relation with longitudinal and lateral stabilities of the trap.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/77/11/1.2400023.html;jsessionid=dr57e1md3d29.x-aip-live-03?itemId=/content/aip/journal/rsi/77/11/10.1063/1.2400023&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Implementing both short- and long-working-distance optical trappings into a commercial microscope
http://aip.metastore.ingenta.com/content/aip/journal/rsi/77/11/10.1063/1.2400023
10.1063/1.2400023
SEARCH_EXPAND_ITEM