1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. II. The rejection of common mode forces
Rent:
Rent this article for
USD
10.1063/1.2173076
/content/aip/journal/rsi/77/3/10.1063/1.2173076
http://aip.metastore.ingenta.com/content/aip/journal/rsi/77/3/10.1063/1.2173076

Figures

Image of FIG. 1.
FIG. 1.

Differential period as a function of the balancing parameter . The various curves refer to different values of the other parameters of the system, as given in Table I (all simulations were performed with the rotor spinning at ).

Image of FIG. 2.
FIG. 2.

Common mode (top panel) and differential mode (bottom panel) relative displacements, divided by the intensity of the acceleration applied, in common mode or differential mode, respectively, as functions of the frequency of the applied force. The rotor is spinning at . The other parameters of the system are typical of the present instrument: , , , , , and .

Image of FIG. 3.
FIG. 3.

Inverse rejection function vs frequency in the (top) and (bottom) directions for the rotor spinning at . The other system parameters are the same as in Fig. 2.

Image of FIG. 4.
FIG. 4.

Inverse rejection factor of dc forces, , as a function of various system parameters. From top to bottom, the varying parameters are , , , , and the anisotropy . Solid line: nonspinning rotor. Points: rotor spinning at . The parameters are changed one at a time from the values reported in the caption of Fig. 2.

Image of FIG. 5.
FIG. 5.

Results from numerical simulations of the inverse rejection factor of dc forces, , as a function of the scaling parameter . The solid line refers to the zero spin case with isotropic suspensions , and also to the isotropic rotor in the low and high spin frequency regions. Once anisotropy of the suspensions is taken into account (e.g., with ), the rotor spinning at low frequencies gives the results shown as filled circles, while the one spinning at high frequencies gives the results shown as filled triangles. The dashed line has no physical meaning; it simply shows that the filled triangles still lie on a line, though at lower inclination. The system parameters reported in Fig. 2 correspond to .

Image of FIG. 6.
FIG. 6.

Top panel: the inverse rejection factor of common mode dc forces, , as a function of the spin frequency . The system parameters are the same as in Fig. 2. The numbered arrows indicate crossing points and minima (see text) and correspond to those shown in the bottom panel. Bottom panel: absolute values of the zeros (dashed lines) and of the poles (solid lines) of the transfer function vs . The horizontal branches correspond to the differential frequencies , and split because of the anisotropy. For within the shaded areas, the response is dominated by the zeros of the transfer function , and therefore the relative displacement in response to common mode dc forces, , is strongly suppressed.

Image of FIG. 7.
FIG. 7.

Inverse static rejection as a function of the spin frequency. Curves of increasing thickness refer to increasing values of the scaling parameter , 745, and 2070, while keeping fixed. We note that because of the anisotropic central suspension. Note that different values of leave the position of the peaks unaffected.

Image of FIG. 8.
FIG. 8.

Inverse rejection factor of common mode dc forces, , as a function of the spin frequency at different values of [with the scaling parameter fixed at ]. From bottom to top: , , and . Note the increasing separation in frequency between the peaks from bottom to top, leading to enhanced rejection at higher spin frequencies. For the maximum separation case (top panel) enhanced rejection takes place at .

Tables

Generic image for table
Table I.

Legend corresponding to Fig. 1.

Loading

Article metrics loading...

/content/aip/journal/rsi/77/3/10.1063/1.2173076
2006-03-23
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. II. The rejection of common mode forces
http://aip.metastore.ingenta.com/content/aip/journal/rsi/77/3/10.1063/1.2173076
10.1063/1.2173076
SEARCH_EXPAND_ITEM