banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
An accurate, repeatable, and well characterized measurement of laser damage density of optical materials
Rent this article for


Image of FIG. 1.
FIG. 1.

(Color online) Damage density vs fluence measured with previous procedure (Ref. 6). Six different areas have been tested at six different predetermined control fluences. Each value of damage density is the ratio (number of damage)/(scanned area) for one area, i.e., one control fluence. This measurement is now replaced by that reported in this paper.

Image of FIG. 2.
FIG. 2.

(Color online) Synoptic of the whole procedure, with reference to the sections of the text. The purpose is to replace the raw data of Fig. 1 by a more accurate set of data.

Image of FIG. 3.
FIG. 3.

(Color online) Setup for laser damage testing.

Image of FIG. 4.
FIG. 4.

(Color online) On the left, the successive laser pulses overlap spatially to achieve an almost uniform scanning over the area dedicated to the test. Several areas are fired at several predetermined control fluences. On the right, the beam overlap is reported.

Image of FIG. 5.
FIG. 5.

(Color online) Peak fluence distribution over thousands of shots at a “control” fluence of . In this plot, a set of measurements is represented, ranked from the lowest fluence to the highest, as a function of probability expressed in units of standard deviation. A normal distribution is a straight line in this kind of map, with mean value at and standard deviation equal to the slope. One can see that fluences can be approximately described by a normal law with a mean value of and a standard deviation of .

Image of FIG. 6.
FIG. 6.

(Color online) Setup for the postmortem observation of samples.

Image of FIG. 7.
FIG. 7.

(Color online) Example of result expressed as density vs peak fluence (after Sec. III) of raster scanning a fused silica window at by means of tripled Nd:YAG laser. In this case, the mean peak fluence is . Here, each shot is taken to irradiate a surface area equal to the equivalent area of the Gaussian part of the beam. From this typical curve, fluence axis may be divided into two parts, above and below .

Image of FIG. 8.
FIG. 8.

(Color online) Damage density vs fluence after treatment taking care of beam shape and to derive experimental uncertainty. Circles are the same as in Fig. 7; for those, fluence is peak fluence of the beam. Squares represent treated data; in this case fluence is the local fluence. Data on plateau are issue from relation (8) and those in the high fluence range from relation (7). Error bar calculations are explained in Sec. IV. Let us note that the error bars on log density appear to be roughly the same whatever fluences. This is due to the fact that during the test procedure, the number of shots decreases with increasing fluence (see Fig. 5). Damage probability increases with fluence, then the number of damage sites is almost constant.

Image of FIG. 9.
FIG. 9.

(Color online) Damage density vs true local fluence. (a) Two scans at nearly the same fluence , one being that already shown in Figs. 7 and 8. (b) Two scans in two different fluence ranges (8.3 and , respectively).


Generic image for table
Table I.

Interval of confidence of for a given measured value of .


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An accurate, repeatable, and well characterized measurement of laser damage density of optical materials