1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Atom probe tomography
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/78/3/10.1063/1.2709758
1.
1.J. Pesché, Nanoventures 2003 Conference, Dallas, TX, 22 March 2003 (unpublished).
2.
2.The word “atom” comes from the Greek “a” which means not and “tomos” which means divide or cut. The atom was hypothesized to be the smallest indivisible unit of matter.
3.
3.For a summary of this event, see A. J. Melmed, Appl. Surf. Sci.0169-4332 94/95, 17 (1996).
4.
4.It should be noted that all atom probes provide information that is three dimensional. This was especially true of the imaging atom probe developed by Panitz in 1973 see (Ref. 42). Atom probes that record the three-dimensional positions and identities of all (detected) atoms in a specimen have been called 3DAP in recognition of this fact.
5.
5.J. R. Oppenheimer, Phys. Rev.0031-899X 31, 66 (1928).
http://dx.doi.org/10.1103/PhysRev.31.66
6.
6.R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A0950-1207 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
7.
7.E. W. Müller, Zh. Tekh. Fiz.0044-4642 17, 412 (1936).
8.
8.E. W. Müller, Z. Phys.0044-3328 31, 136 (1951).
9.
9.M. Southon, Field Ion Microscopy (Plenum, New York, 1968).
10.
10.R. Gomer, Field Emission and Field Ionization (AIP, Woodbury, NY, 1993).
11.
11.C. A. Spindt, J. Appl. Phys.0021-8979 39, 3504 (1968).
http://dx.doi.org/10.1063/1.1656810
12.
12.I. Brodie and C. A. Spindt, Adv. Electron. Electron Phys.0065-2539 83, 1 (1992).
http://dx.doi.org/10.1002/9780470141410.ch1
13.
13.J. Mitterauer, Appl. Surf. Sci.0169-4332 87/88, 79 (1995).
14.
14.R. Young, J. Ward, and F. Scire, Rev. Sci. Instrum.0034-6748 43, 999 (1972).
http://dx.doi.org/10.1063/1.1685846
15.
15.See, for example, C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, 1993)
15.or S. H. Cohen and M. L. Lightbody, Atomic Force Microscopy/Scanning Tunneling Microscopy (Plenum, New York, 1997), Vol. 2.
16.
16.E. W. Müller and J. A. Panitz, Proceedings of the 14th International Field Emission Symposium, The National Bureau of Standards, Washington, DC, 1967 (unpublished).
17.
17.E. W. Müller, J. A. Panitz, and S. B. McLane, Rev. Sci. Instrum.0034-6748 39, 83 (1968).
http://dx.doi.org/10.1063/1.1683116
18.
18.E. W. Müller and T. Sakurai, J. Vac. Sci. Technol.0022-5355 11, 878 (1974).
http://dx.doi.org/10.1116/1.1318083
19.
19.A. Wagner, T. M. Hall, and D. N. Seidman, Rev. Sci. Instrum.0034-6748 46, 1032 (1975).
http://dx.doi.org/10.1063/1.1134386
20.
20.E. W. Müller and S. V. Krishnaswamy, Rev. Sci. Instrum.0034-6748 45, 1053 (1974).
http://dx.doi.org/10.1063/1.1686808
21.
21.W. P. Poschenrieder, Int. J. Mass Spectrom. Ion Phys.0020-7381 9, 83 (1972).
http://dx.doi.org/10.1016/0020-7381(72)80020-2
22.
22.Mass resolution is a number that is always less than 1. It is commonly expressed as “one part in ” or “.” The reciprocal of this number is the mass resolving power, The value of is determined by the peak width of a given species at a particular fraction of the peak height. Thus, the full width at half maximum (FWHM) of a peak in mass-to-charge-state units divided by the mass-to-charge-state value of the centroid of the peak, , is the mass resolution, , at FWHM at . The full width at tenth maximum (FWTM) is another common measure of mass resolution. This latter value is more stringent. In many cases, a single number greater than 1 is stated (incorrectly) as the mass resolution, whereas it is really the mass resolving power. If only one value is given and no peak height information is listed, then it is most likely the FWHM value.
23.
23.B. A. Mamyrin, V. I. Karataev, D. V. Shmikk, and V. A. Zagulin, Sov. Phys. JETP0038-5646 3, 45 (1973).
24.
24.M. R. Scheinfein and D. N. Seidman, Rev. Sci. Instrum.0034-6748 64, 3126 (1993).
http://dx.doi.org/10.1063/1.1144319
25.
25.T. T. Tsong, J. H. Block, M. Nagasaka, and B. Viswanathan, J. Chem. Phys.0021-9606 65, 2469 (1976).
http://dx.doi.org/10.1063/1.433338
26.
26.T. T. Tsong, Surf. Sci.0039-6028 70, 211 (1978).
http://dx.doi.org/10.1016/0039-6028(78)90410-7
27.
27.B. H. C. Niu, J. R. Beacham, and P. J. Bryant, J. Chem. Phys.0021-9606 67, 2039 (1977).
http://dx.doi.org/10.1063/1.435087
28.
28.W. Drachsel, S. Nishigaki, and J. H. Block, Int. J. Mass Spectrom. Ion Phys.0020-7381 32, 333 (1980).
http://dx.doi.org/10.1016/0020-7381(80)80017-9
29.
29.S. Nishigaki, W. Drachsel, and J. H. Block, Surf. Sci.0039-6028 87, 389 (1979).
http://dx.doi.org/10.1016/0039-6028(79)90537-5
30.
30.G. L. Kellogg and T. T. Tsong, J. Appl. Phys.0021-8979 51, 1184 (1980).
http://dx.doi.org/10.1063/1.327686
31.
31.J. Liu, C.-W. Wu, and T. T. Tsong, Surf. Sci.0039-6028 246, 157 (1991).
http://dx.doi.org/10.1016/0167-2584(91)90720-C
32.
32.J. Bunton, J. D. Olson, and T. F. Kelly final report on Grant No. 0340351, US National Science Foundation (2005).
33.
33.B. Gault, F. Vurpillot, A. Bostel, A. Menand, and B. Deconihout, Appl. Phys. Lett.0003-6951 86, 094101 (2005).
http://dx.doi.org/10.1063/1.1871342
34.
34.B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, and B. Deconihout, Rev. Sci. Instrum.0034-6748 77, 043705 (2006).
http://dx.doi.org/10.1063/1.2194089
35.
35.F. Vurpillot, B. Gault, A. Vella, M. Bouet, and B. Deconihout, Appl. Phys. Lett.0003-6951 88, 094105 (2006).
http://dx.doi.org/10.1063/1.2181654
36.
36.A. Cerezo, G. D. W. Smith, and P. H. Clifton, Appl. Phys. Lett.0003-6951 88, 154103 (2006).
http://dx.doi.org/10.1063/1.2191412
37.
37.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy (Oxford University Press, Oxford, 1996), pp. 6970.
38.
38.A. Vella, F. Vurpillot, B. Gault, A. Menand, and B. Deconihout, Phys. Rev. B0163-1829 73, 165416 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.165416
39.
39.Imago Scientific Instruments Corporation, Madison, WI, (http://www.imago.com).
40.
40.Cameca SA, Paris, France (http://www.cameca.fr/).
41.
41.Oxford nanoScience, Ltd., Milton Keynes, UK (http://www.oxfordnanoscience.com/index.shtml).
42.
42.J. A. Panitz, Rev. Sci. Instrum.0034-6748 44, 1034 (1973).
http://dx.doi.org/10.1063/1.1686295
43.
43.J. A. Panitz, US Patent No. 3,868,507 (February 25, 1975).
44.
44.J. A. Panitz, in Proceedings of the 52nd Electron Microscopy Society Meeting, New Orleans, LA, edited by G. W. Bailey and A. J. Garrett-Reed (San Francisco Press, San Francisco, CA, 1994), p. 824.
45.
45.M. K. Miller, presented at the 21st Microbeam Analysis Society Meeting, Albuquerque, NM, 1986 (unpublished).
46.
46.M. K. Miller, Surf. Sci.0039-6028 246, 428 (1991).
http://dx.doi.org/10.1016/0039-6028(91)90447-Z
47.
47.M. K. Miller, Surf. Sci.0039-6028 266, 494 (1992).
http://dx.doi.org/10.1016/0039-6028(92)91065-J
48.
48.A. Cerezo and G. D. W. Smith, European Patent No. 0,231,247 (October 10, 1990).
49.
49.A. Cerezo, T. J. Godfrey, and G. D. W. Smith, Rev. Sci. Instrum.0034-6748 59, 862 (1988).
http://dx.doi.org/10.1063/1.1139794
50.
50.C. Martin, P. Jelinsky, M. Lampton, R. F. Malina, and H. O. Auger, Rev. Sci. Instrum.0034-6748 52, 1067 (1981).
http://dx.doi.org/10.1063/1.1136710
51.
51.A. Bostel, D. Blavette, A. Menand, and A. Sarrau, J. Phys. (Paris), Colloq.0449-1947 50, C8501 (1989).
52.
52.B. Deconihout, A. Bostel, A. Menand, J. M. Sarrau, M. Bouet, S. Chambreland, and D. Blavette, Appl. Surf. Sci.0169-4332 67, 444 (1993).
http://dx.doi.org/10.1016/0169-4332(93)90351-B
53.
53.A. Cerezo, T. J. Godfrey, J. M. Hyde, S. J. Sijbrandij, and G. D. W. Smith, Appl. Surf. Sci.0169-4332 76/77, 374 (1994).
54.
54.B. Deconihout, L. Renaud, G. Da Costa, M. Bouet, A. Bostel, and D. Blavette, Ultramicroscopy0304-3991 73, 253 (1998).
http://dx.doi.org/10.1016/S0304-3991(97)00164-2
55.
55.H. Keller, G. Klingelhfer, and E. Kankeleit, Nucl. Instrum. Methods Phys. Res. A0168-9002 258, 221 (1987).
http://dx.doi.org/10.1016/0168-9002(87)90059-3
56.
56.M. Lampton, O. Siegmund, and R. Raffanti, Rev. Sci. Instrum.0034-6748 58, 2298 (1987).
http://dx.doi.org/10.1063/1.1139341
57.
57.H.-O. Andrén and K. Stiller (unpublished).
58.
58.G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, and B. Deconihout, Rev. Sci. Instrum.0034-6748 76, 013304 (2005).
http://dx.doi.org/10.1063/1.1829975
59.
59.T. F. Kelly, J. J. McCarthy, and D. C. Mancini, U.S. Patent No. 5,061,850 (October 29, 1991).
60.
60.O. Jagutzki, H. Schmidt-Böcking, V. Mergel, A. Cerezo, and M. Huang, U.S. Patent No. 6,661,013 (December 9, 2003).
61.
61.O. Jagutzki et al., IEEE Trans. Nucl. Sci.0018-9499 49, 2477 (2002).
http://dx.doi.org/10.1109/TNS.2002.803889
62.
62.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy (Ref. 37), pp. 274277.
63.
63.M. K. Miller, Atom Probe Tomography (Kluwer Academic Dordrecht/Plenum, New York, 2000), pp. 197216.
64.
64.Y. Ishikawa, T. Yoshimura, S. Ohkido, and O. Nishikawa, Japanese Patent No. JP7043373 (February 14, 1995).
65.
65.O. Nishikawa and M. Kimoto, Appl. Surf. Sci.0169-4332 76/77, 424 (1994).
66.
66.O. Nishikawa, M. Kimoto, and Y. Ishikawa, J. Vac. Sci. Technol. B0734-211X 13, 599 (1995).
http://dx.doi.org/10.1116/1.587922
67.
67.T. F. Kelly, P. P. Camus, D. J. Larson, L. M. Holzman, and S. S. Bajikar, U.S. Patent 08/272,204 (August 8, 1995).
68.
68.T. F. Kelly, P. P. Camus, D. J. Larson, L. M. Holzman, and S. S. Bajikar, Ultramicroscopy0304-3991 62, 29 (1996).
http://dx.doi.org/10.1016/0304-3991(95)00086-0
69.
69.J. Bunton, D. Lenz, J. D. Olson, K. Thompson, R. Ulfig, D. Larson, and T. Kelly, Microsc. Microanal.1431-9276 12, 1730 (2006).
http://dx.doi.org/10.1017/S1431927606065809
70.
70.P. Panayi, Great Britain Patent Application No. GB2426120A, November 15, 2006.
71.
71.E. W. Müller and T. T. Tsong, Field Ion Microscopy Principles and Applications (Elsevier, New York, 1969).
72.
72.M. K. Miller and G. D. W. Smith, Atom Probe Microanalysis: Principles and Applications to Materials Problems (Materials Research Society, Pittsburgh, PA, 1989), pp. 3759.
73.
73.A. J. Melmed, J. Vac. Sci. Technol. B0734-211X 9, 601 (1991).
http://dx.doi.org/10.1116/1.585467
74.
74.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy (Ref. 37), pp. 476483.
75.
75.M. K. Miller, Atom Probe Tomography (Ref. 63), pp. 2544.
76.
76.A. J. Melmed and J. J. Carrol, J. Vac. Sci. Technol. A0734-2101 2, 1388 (1984).
http://dx.doi.org/10.1116/1.572370
77.
77.J. E. Fasth, B. Loberg, and H. Nordén, J. Sci. Instrum.0950-7671 44, 1044 (1967).
http://dx.doi.org/10.1088/0950-7671/44/12/428
78.
78.B. Loberg and H. Nordén, Ark. Fys. 39, 383 (1969).
79.
79.J. M. Papazian, J. Microsc.0022-2720 94, 63 (1971).
80.
80.A. Henjered and H. Nordén, J. Phys. E0022-3735 16, 617 (1983).
http://dx.doi.org/10.1088/0022-3735/16/7/014
81.
81.U. Rolander, J. Phys. (Paris), Colloq.0449-1947 47, C7449 (1986).
82.
82.J. A. Liddle, A. Norman, A. Cerezo, and C. R. M. Grosvenor, J. Phys. (Paris), Colloq.0449-1947 49, C6509 (1988).
83.
83.D. J. Larson, C.-M. Teng, P. P. Camus, and T. F. Kelly, Appl. Surf. Sci.0169-4332 87/88, 446 (1995).
84.
84.P. P. Camus, D. J. Larson, and T. F. Kelly (unpublished).
85.
85.A. R. Waugh, S. Payne, G. M. Worrall, and G. D. W. Smith, J. Phys. (Paris), Colloq.0449-1947 45, C9207 (1984).
86.
86.D. J. Larson, A. K. Petford-Long, A. Cerezo, G. D. W. Smith, D. T. Foord, and T. C. Anthony, Appl. Phys. Lett.0003-6951 73, 1125 (1998).
http://dx.doi.org/10.1063/1.122104
87.
87.D. J. Larson, A. K. Petford-Long, A. Cerezo, and G. D. W. Smith, Acta Mater.1359-6454 47, 4019 (1999).
http://dx.doi.org/10.1016/S1359-6454(99)00284-0
88.
88.D. J. Larson, D. T. Foord, A. K. Petford-Long, A. Cerezo, and G. D. W. Smith, Nanotechnology0957-4484 10, 45 (1999).
http://dx.doi.org/10.1088/0957-4484/10/1/010
89.
89.D. J. Larson, D. T. Foord, A. K. Petford-Long, H. Liew, M. G. Blamire, A. Cerezo, and G. D. W. Smith, Ultramicroscopy0304-3991 79, 287 (1999).
http://dx.doi.org/10.1016/S0304-3991(99)00055-8
90.
90.D. J. Larson, B. D. Wissman, R. L. Martens, R. J. Viellieux, T. F. Kelly, T. T. Gribb, H. F. Erskine, and N. Tabat, Microsc. Microanal.1431-9276 7, 24 (2000).
91.
91.J. Schleiwies, Ph.D. thesis, Universität Göttingen, 2001.
92.
92.G. B. Thompson, M. K. Miller, and H. L. Fraser, Ultramicroscopy0304-3991 100, 25 (2004).
http://dx.doi.org/10.1016/j.ultramic.2004.01.010
93.
93.T. F. Kelly, R. L. Martens, and S. L. Goodman, U.S. Patent No. 6,576,900 (June 10, 2003).
94.
94.K. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly, and B. Gorman, Ultramicroscopy0304-3991 107, 131 (2007).
http://dx.doi.org/10.1016/j.ultramic.2006.06.008
95.
95.M. K. Miller, K. F. Russell, and G. B. Thompson, Ultramicroscopy0304-3991 102, 287 (2005).
http://dx.doi.org/10.1016/j.ultramic.2004.10.011
96.
96.D. J. Larson, A. K. Petford-Long, Y. Q. Ma, and A. Cerezo, Acta Mater.1359-6454 52, 2847 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.03.015
97.
97.K. H. Kuhlman, R. J. Martens, T. F. Kelly, and M. K. Miller, Ultramicroscopy0304-3991 89, 169 (2001).
http://dx.doi.org/10.1016/S0304-3991(01)00116-4
98.
98.K. H. Kuhlman, T. F. Kelly, and M. K. Miller, Microsc. Microanal.1431-9276 10, 512 (2004).
99.
99.H. O. Colijn, T. F. Kelly, R. M. Ulfig, and R. G. Buchheit, Microsc. Microanal.1431-9276 10, 1150 (2004).
100.
100.M. K. Miller and K. F. Russell, Microsc. Microanal.1431-9276 12, 1294 (2006).
http://dx.doi.org/10.1017/S1431927606062817
101.
101.A. Kvist, H.-O. Andrén, and L. Lundin, Appl. Surf. Sci.0169-4332 94/95, 356 (1996).
102.
102.K. Thompson, J. H. Booske, D. J. Larson, and T. F. Kelly, Appl. Phys. Lett.0003-6951 87, 052108 (2005).
http://dx.doi.org/10.1063/1.2005368
103.
103.M. K. Miller, C. T. Liu, J. A. Wright, W. Tang, and K. Hildal, Intermetallics0966-9795 14, 1019 (2006).
http://dx.doi.org/10.1016/j.intermet.2006.01.040
104.
104.K. H. Kuhlman and J. R. Wishard, U.S. Patent No. 200,410,056,195 A1 (August 29, 2004).
105.
105.Imago Scientific Instruments Corporation (unpublished), available as a commercial product.
106.
106.C. B. Ene, G. Schmitz, R. Kirchheim, and A. Hütten, Acta Mater.1359-6454 53, 3383 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.03.038
107.
107.C. Lang and G. Schmitz, Mater. Sci. Eng., A0921-5093 353, 119 (2003).
108.
108.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy (Ref. 37), pp. 135215 and 377473.
109.
109.M. K. Miller, P. Pareige, and M. G. Burke, Mater. Charact.1044-5803 44, 235 (2000).
http://dx.doi.org/10.1016/S1044-5803(99)00056-X
110.
110.M. K. Miller, Atom Probe Tomography (Ref. 63), p. 184.
111.
111.D. Blavette, E. Cadel, and B. Deconihout, Mater. Charact.1044-5803 44, 133 (2000).
http://dx.doi.org/10.1016/S1044-5803(99)00050-9
112.
112.M. K. Miller, Micron0968-4328 32, 757 (2001).
http://dx.doi.org/10.1016/S0968-4328(00)00083-4
113.
113.R. C. Thomson and M. K. Miller, Mat. Sci. Technol.1001-0181 16, 1199 (2000).
114.
114.M. K. Miller, S. S. Babu, and M. G. Burke, Mater. Sci. Eng., A0921-5093 270, 14 (1999).
http://dx.doi.org/10.1016/S0921-5093(99)00235-X
115.
115.M. K. Miller, J. M. Hyde, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metall. Mater.0956-7151 43, 3385 (1995).
http://dx.doi.org/10.1016/0956-7151(95)00040-3
116.
116.J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metall. Mater.0956-7151 43, 3403 (1995).
http://dx.doi.org/10.1016/0956-7151(95)00041-S
117.
117.J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metall. Mater.0956-7151 43, 3415 (1995).
http://dx.doi.org/10.1016/0956-7151(95)00042-T
118.
118.K. Hono, Acta Mater.1359-6454 47, 3127 (1999).
http://dx.doi.org/10.1016/S1359-6454(99)00175-5
119.
119.M. K. Miller, Trans. Metall. Soc. AIME 1, 19 (2004).
120.
120.M. K. Miller, Microsc. Res. Tech.1059-910X 69, 359 (2006).
http://dx.doi.org/10.1002/jemt.20291
121.
121.M. K. Miller, Microsc. Microanal.1431-9276 12, 60 (2006).
http://dx.doi.org/10.1017/S1431927606063975
122.
122.D. Blavette, E. Cadel, A. Fraczkiewicz, and A. Menand, Science0036-8075 286, 2317 (1999).
http://dx.doi.org/10.1126/science.286.5448.2317
123.
123.M. K. Miller, K. F. Russell, J. Kocik, and E. Keilova, J. Nucl. Mater.0022-3115 282, 83 (2000).
http://dx.doi.org/10.1016/S0022-3115(00)00240-3
124.
124.M. K. Miller, K. F. Russell, J. Kocik, and E. Keilova, Micron0968-4328 32, 749 (2001).
http://dx.doi.org/10.1016/S0968-4328(00)00082-2
125.
125.M. K. Miller, M. A. Sokolov, R. K. Nanstad, and K. F. Russell, J. Nucl. Mater.0022-3115 351, 187 (2006).
http://dx.doi.org/10.1016/j.jnucmat.2006.02.013
126.
126.M. K. Miller, E. A. Kenik, K. F. Russell, L. Heatherly, D. T. Hoelzer, and P. J. Maziasz, Mater. Sci. Eng., A0921-5093 353, 140 (2003).
127.
127.J. Wilde, A. Cerezo, and G. D. W. Smith, Scr. Mater.1359-6462 43, 39 (2000).
http://dx.doi.org/10.1016/S1359-6462(00)00361-4
128.
128.E. V. Pereloma and M. K. Miller, Microsc. Microanal.1431-9276 11, 876 (2005).
129.
129.E. A. Marquis, D. N. Seidman, M. Asta, C. Woodward, and V. Ozoliņš, Phys. Rev. Lett.0031-9007 91, 036101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.036101
130.
130.O. C. Hellman, J. A. Vandenbroucke, J. Rüsing, D. Isheim, and D. N. Seidman, Microsc. Microanal.1431-9276 6, 437 (2000).
131.
131.V. Vovk, G. Schmitz, and R. Kirchheim, Phys. Rev. B0163-1829 69, 104102 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.104102
132.
132.T. Jeske and G. Schmitz, Mater. Sci. Eng., A0921-5093 327, 101 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01886-X
133.
133.X. W. Zhou et al., Acta Mater.1359-6454 49, 4005 (2001).
http://dx.doi.org/10.1016/S1359-6454(01)00287-7
134.
134.D. J. Larson, A. Cerezo, P. H. Clifton, A. K. Petford-Long, R. L. Martens, T. F. Kelly, and N. Tabat, J. Appl. Phys.0021-8979 89, 7517 (2001).
http://dx.doi.org/10.1063/1.1354593
135.
135.D. J. Larson, A. K. Petford-Long, A. Cerezo, S. P. Bozeman, A. Morrone, Y. Q. Ma, A. Georgalakis, and P. H. Clifton, Phys. Rev. B0163-1829 67, 144420 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144420
136.
136.D. J. Larson, P. H. Clifton, N. Tabat, A. Cerezo, A. K. Petford-Long, R. L. Martens, and T. F. Kelly, Appl. Phys. Lett.0003-6951 77, 726 (2000).
http://dx.doi.org/10.1063/1.127099
137.
137.X. W. Zhou (private communication with D. J. Larson).
138.
138.M. Kuduz, G. Schmitz, and R. Kirchheim, Ultramicroscopy0304-3991 101, 197 (2004).
http://dx.doi.org/10.1016/j.ultramic.2004.06.003
139.
139.R. L. Comstock, J. Mater. Sci.: Mater. Electron.0957-4522 13, 509 (2002).
http://dx.doi.org/10.1023/A:1019642215245
140.
140.T. T. Tsong, J. H. Block, M. Nagasaka, and B. Wiswanathan, J. Chem. Phys.0021-9606 65, 2469 (1976) (cited in Ref. 30).
http://dx.doi.org/10.1063/1.433338
141.
141.R. A. King, R. A. D. Mackenzie, G. D. W. Smith, and N. A. Cade, J. Vac. Sci. Technol. B0734-211X 12, 705 (1994).
http://dx.doi.org/10.1116/1.587376
142.
142.M. K. Miller, P. Angelini, A. Cerezo, and K. L. More, J. Phys. (Paris), Colloq.0449-1947 50, C8459 (1989).
143.
143.B. Gault, A. Menand, F. de Geuser, B. Deconihout, and R. Danoix, Appl. Phys. Lett.0003-6951 88, 114101 (2006).
http://dx.doi.org/10.1063/1.2186394
144.
144.A. J. Melmed, M. Martinka, S. M. Girvin, T. Sakurai, and Y. Kuk, Appl. Phys. Lett.0003-6951 39, 416 (1981).
http://dx.doi.org/10.1063/1.92757
145.
145.T. F. Kelly, T. T. Gribb, R. L. Martens, D. J. Larson, N. Tabat, R. J. Matyi, and T. J. Shaffner, Proceedings of Characterization and Metrology for ULSI Technology, (American Institue of Physics, Melville, 2002), p. 620.
146.
146.J. S. Moore, K. Jones, K. Thompson, R. M. Ulfig, D. J. Larson, H. Kennel, and S. Corcoran, Ultramicroscopy0304-3991 (submitted).
147.
147.T. F. Kelly, D. J. Larson, K. Thompson, R. L. Alvis, J. H. Bunton, J. D. Olson, B. P. Gorman Annu. Rev. Mater. Res.1531-7331(to be published).
148.
148.NIST Standard Reference Material 2137, available from the US National Institute of Standards and Technology, Office of Calibration Standards (http://ts.nist.gov/ts/htdocs/230/233/calibrations/).
149.
149.K. Thompson and W. Van der Voorst (unpublished).
150.
150.P. P. Camus, A. J. Melmed, and J. F. Banfield, 38th International Field Emission Symposium, Vienna, 5–9 August 1991 (unpublished).
151.
151.M. K. Miller and G. D. W. Smith, Met. Sci.0306-3453 11, 249 (1977).
http://dx.doi.org/10.1016/0036-9748(77)90063-1
152.
152.E. S. Machlin, A. Freilich, D. C. Agrawal, J. J. Burton, and C. L. Briant, J. Microsc.0022-2720 104, 127 (1975).
153.
153.J. A. Panitz, J. Microsc.0022-2720 125, 3 (1981).
154.
154.J. A. Panitz, Ultramicroscopy0304-3991 7, 241 (1982).
http://dx.doi.org/10.1016/0304-3991(82)90171-1
155.
155.J. A. Panitz, Ultramicroscopy0304-3991 11, 161 (1983).
http://dx.doi.org/10.1016/0304-3991(83)90232-2
156.
156.O. Nishikawa, T. Sekine, Y. Ohtani, K. Maeda, Y. Numada, and M. Watanabe, J. Vac. Sci. Technol. B0734-211X 16, 836 (1997).
http://dx.doi.org/10.1116/1.589917
157.
157.O. Nishikawa et al., Appl. Phys. A: Mater. Sci. Process.0947-8396 66, s11 (1998).
158.
158.J. Liu and T. T. Tsong, Phys. Rev. B0163-1829 38, 8490 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.8490
159.
159.T. Maruyama, Y. Hasegawa, T. Nishi, and T. Sakurai, J. Phys. (Paris), Colloq.0449-1947 48, 269 (1987).
160.
160.F. Iwatsu, H. Morikawa, and T. Terao, J. Phys. (Paris), Colloq.0449-1947 48, 263 (1987).
161.
161.In round numbers, here we assume that at least ten atoms must be detected above background in order to be sure it is not noise. Thus, a minimum of atoms must be detected above background in order to expect to detect of a specie.
162.
162.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy (Ref. 37) pp. 118121.
163.
163.J. A. Panitz and J. A. Foesch, Rev. Sci. Instrum.0034-6748 47, 44 (1976).
http://dx.doi.org/10.1063/1.1134488
164.
164.B. Deconihout, P. Gerard, M. Bouet, and A. Bostel, Appl. Surf. Sci.0169-4332 94/95, 422 (1996).
165.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/rsi/78/3/10.1063/1.2709758
Loading
/content/aip/journal/rsi/78/3/10.1063/1.2709758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/78/3/10.1063/1.2709758
2007-03-30
2014-09-17

Abstract

The technique of atom probe tomography (APT) is reviewed with an emphasis on illustrating what is possible with the technique both now and in the future. APT delivers the highest spatial resolution (sub-) three-dimensional compositional information of any microscopy technique. Recently, APT has changed dramatically with new hardware configurations that greatly simplify the technique and improve the rate of data acquisition. In addition, new methods have been developed to fabricate suitable specimens from new classes of materials. Applications of APT have expanded from structural metals and alloys to thin multilayer films on planar substrates, dielectric films, semiconducting structures and devices, and ceramic materials. This trend toward a broader range of materials and applications is likely to continue.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/78/3/1.2709758.html;jsessionid=h81s4967bpmb.x-aip-live-06?itemId=/content/aip/journal/rsi/78/3/10.1063/1.2709758&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Atom probe tomography
http://aip.metastore.ingenta.com/content/aip/journal/rsi/78/3/10.1063/1.2709758
10.1063/1.2709758
SEARCH_EXPAND_ITEM