Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/79/4/10.1063/1.2908445
1.
1.Overview about magnetic random access memory: http://www.mram-info.com
2.
2.L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S. Parkin, Science 315, 1553 (2007).
http://dx.doi.org/10.1126/science.1137662
3.
3.S. Demokritov and B. Hillebrands, in Magnetic Structures I, edited by B. Hillebrands and K. Ounadjela (Springer, Berlin, 2002).
4.
4.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
5.
5.G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
6.
6.L. A. Bottomley, Anal. Chem. 70, 425R (1998).
http://dx.doi.org/10.1021/a1980011o
7.
7.H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).
8.
8.G. Grigull and H. Sandner, Wärmeleitung (Springer, Berlin, 1988).
9.
9.Y. S. Touloukian, Thermal Radiative Properties—Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 7.
10.
10.J. Bolte, F. Niebisch, P. Stelmaszyk, A. D. Wieck, and J. Pelzl, J. Appl. Phys. 84, 6917 (1998);
http://dx.doi.org/10.1063/1.368989
10.J. Bolte, Ph.D. thesis, Ruhr-Universität Bochum, 1999.
11.
11.B. K. Bein, J. Bolte, A. Haj-Daoud, G. Kalus, F. Macedo, A. Linnenbrügger, H. Bosse, and J. Pelzl, Surf. Coat. Technol. 116–119, 147 (1999).
12.
12.A. Rosencwaig, in Advances in Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by A. Mandelis (North Holland, New York, 1987).
13.
13.D. Dietzel, R. Meckenstock, S. Chotikaprakham, J. Bolte, J. Pelzl, R. Aubry, J. C. Jacquet, and S. Cassette, Superlattices Microstruct. 35, 477 (2004).
http://dx.doi.org/10.1016/j.spmi.2003.09.009
14.
14.D. Fournier and B. C. Forget, Microtherm. report, 2001.
15.
15.D. Dietzel, B. K. Bein, and J. Pelzl, J. Appl. Phys. 93, 9043 (2003).
http://dx.doi.org/10.1063/1.1572196
16.
16.A. Majumdar, J. P. Carrejo, and J. Lai, Appl. Phys. Lett. 62, 2501 (1993).
http://dx.doi.org/10.1063/1.109335
17.
17.R. B. Dinwiddie, J. J. Pylkky, and P. E. West, Therm. Conduct. 22, 668 (1993).
18.
18.J. K. Gimzewski, C. Gerber, E. Meyer, and R. R. Schlitter, Chem. Phys. Lett. 217, 589 (1994).
http://dx.doi.org/10.1016/0009-2614(93)E1419-H
19.
19.M. Chirtoc, X. Filip, J. F. Herny, J. S. Antoniow, I. Chirtoc, D. Dietzel, R. Meckenstock, and J. Pelzl, Superlattices Microstruct. 35, 305 (2004).
http://dx.doi.org/10.1016/j.spmi.2003.09.002
20.
20.R. Meckenstock, M. V. Rastei, and J. P. Bucher, J. Appl. Phys. 95, 6753 (2004).
http://dx.doi.org/10.1063/1.1669125
21.
21.A. Majumdar, Annu. Rev. Mater. Sci. 29, 505 (1999).
http://dx.doi.org/10.1146/annurev.matsci.29.1.505
22.
22.S. Gomes, N. Trannoy, and Ph. Grossel, Meas. Sci. Technol. 10, 805 (1999).
http://dx.doi.org/10.1088/0957-0233/10/9/307
23.
23.Veeco, Dimensions 3000 Manual.
24.
24.J. Varesi and A. Majumdar, Appl. Phys. Lett. 72, 37 (1998).
http://dx.doi.org/10.1063/1.120638
25.
25.L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935);
25.G. V. Skrotskii and L. V. Kurbatov, in Feromagnetic Resonance, edited by S. V. Vonsovskii (Pergamon, New York, 1966).
26.
26.B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 (1993);
http://dx.doi.org/10.1080/00018739300101524
26.J. Lindner, U. Wiedwald, K. Baberschke, M. Farle, J. Vac. Sci. Technol. A 23, 796 (2005).
http://dx.doi.org/10.1063/1.1894418
27.
27.L. Néel, J. Phys. Radium 15, 225 (1954).
http://dx.doi.org/10.1051/jphysrad:01954001504022500
28.
28.J. H. van Vleck, Phys. Rev. 52, 1178 (1937).
http://dx.doi.org/10.1103/PhysRev.52.1178
29.
29.R. I. Joseph and E. Schlömann, J. Appl. Phys. 36, 1579 (1965).
http://dx.doi.org/10.1063/1.1703091
30.
30.Object oriented micromagnetic framework (OOMMF), http://www.math.nist.gov/oommf, vers. 1.2.0.3.
31.
31.C. Poole, Electron Spin Resonance (Mac Graw-Hill, New York, 1967).
32.
32.C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1995).
33.
33.Z. Frait and D. Fraitová, in Spin Waves and Magnetic Excitations, edited by A. S. Borovik-Romanov and S. K. Sinha (Elsevier Science, Amsterdam, 1988).
34.
34.Z. Frait, D. Fraitová, C. Dufour, P. Mangin, and G. Marchal, IEEE Trans. Magn. 30, 711 (1994).
http://dx.doi.org/10.1109/20.312384
35.
35.J. C. Slater, Rev. Mod. Phys. 18, 441 (1946).
http://dx.doi.org/10.1103/RevModPhys.18.441
36.
36.R. Meckenstock, Ph.D. thesis, Ruhr-Universität Bochum, 1997.
37.
37.B. Lax and K. J. Button, in Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962).
38.
38.R. Meckenstock, O. von Geisau, J. A. Wolf, and J. Pelzl, J. Appl. Phys. 77, 6424 (1995);
http://dx.doi.org/10.1063/1.359519
38.R. Meckenstock, K. Harms, O. von Geisau, and J. Pelzl, J. Appl. Phys. 79, 8607 (1996).
http://dx.doi.org/10.1063/1.362458
39.
39.Gnome X scanning microscopy project (GXSM), http://gxsm.sourceforge.net/index.php
40.
40.A. Hammiche, D. J. Hourston, H. M. Pollock, M. Reading, and M. Song, J. Vac. Sci. Technol. B 14, 1486 (1996).
http://dx.doi.org/10.1116/1.589124
41.
41.V. V. Gorbunov, N. Fuchigami, J. L. Hazel, and V. V. Tsukruk, Langmuir 15, 8340 (1999).
http://dx.doi.org/10.1021/la990913a
42.
42.O. von Geisau, R. Meckenstock, F. Schreiber, and J. Pelzl, J. Phys. IV 4, C7133 (1994).
http://dx.doi.org/10.1051/jp1:1994118
43.
43.W. Kiepert, H.-J. Obramski, R. Meckenstock, D. Fournier, U. Zammit, and J. Pelzl, Supplement to Vol. 6 of Progress in Natural Science (Taylor & Francis, London, 1996), p. 515.
44.
44.R. Meckenstock, D. Spoddig, and J. Pelzl, J. Magn. Magn. Mater. 240, 83 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)00754-5
45.
45.R. Meckenstock and J. Pelzl, J. Appl. Phys. 81, 5259 (1997).
http://dx.doi.org/10.1063/1.364486
46.
46.A. D. Wieck and D. Reuter, Inst. Phys. Conf. Ser. 166, 51 (2000).
47.
47.L. Ruppel, G. Witte, Ch. Wöll, T. Last, S. F. Fischer, and U. Kunze, Phys. Rev. B 66, 245307 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245307
48.
48.R. Meckenstock, D. Spoddig, and J. Pelzl, Microsc. Microanal. 8, 1340 (2002);
48.R. Meckenstock, D. Spoddig, D. Dietzel, J. P. Bucher, and J. Pelzl, Rev. Sci. Instrum. 74, 789 (2003).
http://dx.doi.org/10.1063/1.1518549
49.
49.J. L. Bubendorff, J. Pflaum, E. Huebner, D. Raiser, J. P. Bucher, and J. Pelzl, J. Magn. Magn. Mater. 165, 199 (1997);
http://dx.doi.org/10.1016/S0304-8853(96)00506-9
49.J.-L. Bubendorff, Ph.D. thesis, Strassbourg, 1997.
50.
50.S. M. Bhagat and P. Lubitz, Phys. Rev. B 10, 179 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.179
51.
51.Z. Frait and B. Heinrich, J. Appl. Phys. 35, 904 (1964).
http://dx.doi.org/10.1063/1.1713529
52.
52.J. Lindner, K. Lenz, E. Kosubek, K. Baberschke, D. Spoddig, R. Meckenstock, J. Pelzl, Z. Frait, and D. L. Mills, Phys. Rev. B 68, 060102 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.060102
53.
53.M. H. Seavey Jr., J. Appl. Phys. 31, S216 (1960).
http://dx.doi.org/10.1063/1.1984668
54.
54.A. O. Adeyeye, R. P. Cowburn, and M. E. Welland, J. Appl. Phys. 87, 299 (2000).
http://dx.doi.org/10.1063/1.371860
55.
55.A. Nait Abit and J. P. Bucher, Appl. Phys. Lett. 82, 430 (2003).
http://dx.doi.org/10.1063/1.1539908
56.
56.C. Kittel, Phys. Rev. 73, 155 (1948).
http://dx.doi.org/10.1103/PhysRev.73.155
57.
57.A. N. Bogdanov, U. K. Rössler, and K.-H. Müller, J. Magn. Magn. Mater. 242–245, 594 (2002).
58.
58.B. Hausmanns, T. P. Krome, G. Dumpich, E. F. Wassermann, D. Hinzke, U. Nowak, and K. D. Usadel, J. Magn. Magn. Mater. 240, 297 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)00783-1
59.
59.P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5110
60.
60.B. Hausmanns, G. Dumpich, and K. D. Usadel (private communication).
61.
61.B. Bein and J. Pelzl, in Plasma Diagnostics: Surface Analysis and Interaction, edited by O. Auciello and D. L. Flamm (Academic, San Diego, 1989), Vol. 2.
62.
62.Yu. A. Filimonov, A. V. Butko, A. V. Kozhevnikov, A. A. Veselov, S. L. Vysotsky, and S. A. Nikitov, Proc. SPIE 5401, 525 (2004).
http://dx.doi.org/10.1117/12.562659
63.
63.R. Meckenstock, A. Butko, I. Barsukov, D. Spoddig, O. Posth, and J. Lindner, Appl. Phys. Lett. 91, 142507 (2007).
http://dx.doi.org/10.1063/1.2794026
64.
64.O. von Geisau and J. Pelzl, in High Frequency Processes in Magnetic Materials, edited by G. Srinivasan and A. N. Slavin (World Scientific, River Edge, New Jersey, 1995).
65.
65.S. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rep. 348, 441 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00116-2
66.
66.Ultrathin Magnetic Structures, edited by J. A. C. Bland and B. Heinrich (Springer, Berlin, 2004), Vol III/IV.
67.
67.B. T. Rosner and D. W. van der Weide, Rev. Sci. Instrum. 73, 2505 (2002).
http://dx.doi.org/10.1063/1.1482150
68.
68.A. Bauer, Habilitationsschrift (Universität Berlin Press, Berlin, 2000);
68.e.g., B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, and G. Kaindel, Appl. Phys. Lett. 73, 538 (1998).
http://dx.doi.org/10.1063/1.121925
69.
69.R. Meckenstock, M. Möller, and D. Spoddig, Appl. Phys. Lett. 86, 112506 (2005).
http://dx.doi.org/10.1063/1.1883326
70.
70.M. Möller, D. Spoddig, and R. Meckenstock, J. Appl. Phys. 99, 08J310 (2006).
http://dx.doi.org/10.1063/1.2177193
71.
71.H. Wende, Rep. Prog. Phys. 67, 2105 (2004).
http://dx.doi.org/10.1088/0034-4885/67/12/R01
72.
72.D. A. Arena, E. Vescovo, C.-C. Kao, Y. Guan, and W. E. Bailey, J. Appl. Phys. 101, 09C109 (2007).
http://dx.doi.org/10.1063/1.2712294
73.
73.J. A. Sidles, J. L. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yanmoni, Rev. Mod. Phys. 67, 249 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.249
74.
74.Z. Zang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, Appl. Phys. Lett. 73, 2036 (1998).
http://dx.doi.org/10.1063/1.122359
75.
75.S.-H. Chao, W. M. Dougherty, J. L. Garbini, and J. A. Sidles, Rev. Sci. Instrum. 75, 1175 (2004).
http://dx.doi.org/10.1063/1.1666983
76.
76.A. Volodin, D. Buntinx, S. Brems, and C. Van Haesendonck, Appl. Phys. Lett. 85, 5935 (2004).
http://dx.doi.org/10.1063/1.1836866
77.
77.H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat. Nanotechnol. 2, 301 (2007).
http://dx.doi.org/10.1038/nnano.2007.105
78.
78.S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, arXiv:cond-mat/0001075v2;
78.Microwave Superconductivity, edited by H. Weinstock and M. Nisenoff (Kluwer, Amsterdam, 2001).
79.
79.M. Bode, Rep. Prog. Phys. 66, 523 (2003).
http://dx.doi.org/10.1088/0034-4885/66/4/203
80.
80.K. Zakeri, I. Barsukov, M. K. Utochkina, F. Römer, J. Lindner, R. Meckenstock, U. von Hörsten, H. Wende, W. Keune, M. Farle, S. S. Kalarickal, K. Lenz, and Z. Frait, “Magnetic properties of epitaxial thin films,” Phys. Rev. B (to be published).
81.
81.R. Narkowcz, D. Suter, and R. Stonies, J. Magn. Reson. 175, 275 (2005).
http://dx.doi.org/10.1016/j.jmr.2005.04.014
http://aip.metastore.ingenta.com/content/aip/journal/rsi/79/4/10.1063/1.2908445
Loading
/content/aip/journal/rsi/79/4/10.1063/1.2908445
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/79/4/10.1063/1.2908445
2008-04-24
2016-07-29

Abstract

Scanning thermal microscope-detected ferromagnetic resonance (SThM-FMR) combines a thermal near-field microscope with a FMR spectrometer and detects the thermal response due to resonant microwave absorption by measuring the resistivity change in the thermal nanoprobe. The advantage of this technique is to provide imaging capabilities at fixed resonance conditions as well as local microwave spectroscopy at the nanoscale. A technique that uses the same setup but detects the thermoelastic response of the sample is the scanning thermoelastic microscope-detected FMR (SThEM-FMR). This latter technique is advantageous when FMR spectra of single nanostructures have to be recorded at a fixed position. The experimental setups and the signal generation processes of SThM/SThEM-FMR are described in detail. With the SThM-FMR setups a temperature resolution of and a local resolution of are actually achieved. With SThEM-FMR the obtained local resolution is . The detection limits of both techniques can be as low as spins. To demonstrate the potential of these new techniques SThM/SThEM-FMR investigations of local magnetic anisotropies, magnetization dynamics of single nanodots and inhomogeneous FMR excitations due to finite size effects are presented. Simultaneously, information on the magnetic parameters, the topography, and the thermal properties is provided. To describe the further potential of this recently developed SThM-FMR technique, combined magnetoresistance and FMR investigations are presented and an outlook on possible future applications is given.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/79/4/1.2908445.html;jsessionid=7Xy0FwU3hOOwTZ5vXba510KX.x-aip-live-02?itemId=/content/aip/journal/rsi/79/4/10.1063/1.2908445&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/79/4/10.1063/1.2908445&pageURL=http://scitation.aip.org/content/aip/journal/rsi/79/4/10.1063/1.2908445'
Right1,Right2,Right3,