Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/80/10/10.1063/1.3236681
1.
1.A. M. Dupuy, S. Lehmann, and J. P. Cristol, Clin. Chem. Lab. Med. 43, 1291 (2005).
http://dx.doi.org/10.1515/CCLM.2005.223
2.
2.E. T. Fung, V. Thulasiraman, S. R. Weinberger, and E. A. Dalmasso, Curr. Opin. Biotechnol. 12, 65 (2001).
http://dx.doi.org/10.1016/S0958-1669(00)00167-1
3.
3.K. K. Jain, Curr. Opin. Drug Discovery Dev. 7, 285 (2004).
4.
4.A. Lueking, D. J. Cahill, and S. Mullner, Drug Discovery Today 10, 789 (2005).
http://dx.doi.org/10.1016/S1359-6446(05)03449-5
5.
5.T. Vo-Dinh and B. Cullum, Fresenius’ J. Anal. Chem. 366, 540 (2000).
http://dx.doi.org/10.1007/s002160051549
6.
6.K. A. S. Immink, J. Audio Eng. Soc.46, 458 (1998).
7.
7.K. C. Pohlmann, The Compact Disc Handbook, 2nd ed. (A-R Editions, Madison, WI, 1992).
8.
8.T. McCreedy, TrAC, Trends Anal. Chem. 19, 396 (2000).
http://dx.doi.org/10.1016/S0165-9936(99)00176-4
9.
9.P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem. 74, 2637 (2002).
http://dx.doi.org/10.1021/ac020239t
10.
10.K. Huikko, R. Kostiainen, and T. Kotiaho, Eur. J. Pharm. Sci. 20, 149 (2003).
http://dx.doi.org/10.1016/S0928-0987(03)00147-7
11.
11.M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00460-X
12.
12.P. R. Srinivas, M. Verma, Y. M. Zhao, and S. Srivastava, Clin. Chem. 48, 1160 (2002).
13.
13.O. N. Jensen, Nat. Rev. Mol. Cell Biol. 7, 391 (2006).
http://dx.doi.org/10.1038/nrm1939
14.
14.D. Figeys and D. Pinto, Electrophoresis 22, 208 (2001).
http://dx.doi.org/10.1002/1522-2683(200101)22:2<208::AID-ELPS208>3.0.CO;2-O
15.
15.S. Hanash, Nature (London) 422, 226 (2003).
http://dx.doi.org/10.1038/nature01514
16.
16.E. Phizicky, P. I. H. Bastiaens, H. Zhu, M. Snyder, and S. Fields, Nature (London) 422, 208 (2003).
http://dx.doi.org/10.1038/nature01512
17.
17.J. F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G. F. Berriz, F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon, M. Boxem, S. Milstein, J. Rosenberg, D. S. Goldberg, L. V. Zhang, S. L. Wong, G. Franklin, S. M. Li, J. S. Albala, J. H. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex, P. Lamesch, R. S. Sikorski, J. Vandenhaute, H. Y. Zoghbi, A. Smolyar, S. Bosak, R. Sequerra, L. Doucette-Stamm, M. E. Cusick, D. E. Hill, F. P. Roth, and M. Vidal, Nature (London) 437, 1173 (2005).
http://dx.doi.org/10.1038/nature04209
18.
18.N. L. Anderson and N. G. Anderson, Mol. Cell. Proteomics 1, 845 (2002).
http://dx.doi.org/10.1074/mcp.R200007-MCP200
19.
19.A. F. Collings and F. Caruso, Rep. Prog. Phys. 60, 1397 (1997).
http://dx.doi.org/10.1088/0034-4885/60/11/005
20.
20.U. B. Nielsen and B. H. Geierstanger, J. Immunol. Methods 290, 107 (2004).
http://dx.doi.org/10.1016/j.jim.2004.04.012
21.
21.S. F. Kingsmore, Nat. Rev. Drug Discovery 5, 310 (2006).
http://dx.doi.org/10.1038/nrd2006
22.
22.D. D. Nolte and F. E. Regnier, Opt. Photonics News 15, 48 (2004).
http://dx.doi.org/10.1364/OPN.15.10.000048
23.
23.M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, Opt. Lett. 29, 950 (2004).
http://dx.doi.org/10.1364/OL.29.000950
24.
24.X. Wang, M. Zhao, and D. D. Nolte, Appl. Opt. 46, 7836 (2007).
http://dx.doi.org/10.1364/AO.46.007836
25.
25.J. Graham, Biological Centrifugation (Garland Science, London, 2001).
26.
26.M. Madou, J. Zoval, G. Y. Jia, H. Kido, J. Kim, and N. Kim, Annu. Rev. Biomed. Eng. 8, 601 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095758
27.
27.J. Ducree, S. Haeberle, S. Lutz, S. Pausch, F. von Stetten, and R. Zengerle, J. Micromech. Microeng. 17, S103 (2007).
http://dx.doi.org/10.1088/0960-1317/17/7/S07
28.
28.S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
http://dx.doi.org/10.1039/b706364b
29.
29.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
30.
30.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
31.
31.M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, in Biomedical Nanotechnology Architectures and Applications, edited by B. J. Bornhop, D. A. Dunn, R. P. Mariella, C. J. Murphy, D. V. Nicolau, S. Nie, M. Palmer , and R. J. Raghavachari, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, WA, 2002), Vol. 4626, pp. 6977.
32.
32.I. Alexandre, Y. Houbion, J. Collet, S. Hamels J. Demarteau, J. L. Gala, and J. Remacle, BioTechniques 33, 435 (2002).
33.
33.J. J. La Clair and M. D. Burkart, Org. Biomol. Chem. 1, 3244 (2003).
http://dx.doi.org/10.1039/b306391g
34.
34.M. J. Madou and G. J. Kellogg, in Systems and Technologies for Clinical Diagnostics and Drug Discovery, edited by G. E. Cohn and A. Katzir (SPIE, San Jose, 1998), Vol. 3259, pp. 8093.
35.
35.D. Duffy, H. Gills, J. Lin, N. Sheppard, and G. Kellogg, Anal. Chem. 71, 4669 (1999).
http://dx.doi.org/10.1021/ac990682c
36.
36.D. S. Kim and T. H. Kwon, Microfluid. Nanofluid. 2, 125 (2006).
http://dx.doi.org/10.1007/s10404-005-0053-8
37.
37.T. Brenner, T. Glatzel, R. Zengerle, and J. Ducree, Lab Chip 5, 146 (2005).
http://dx.doi.org/10.1039/b406699e
38.
38.C. T. Schembri, T. L. Burd, A. R. Kopfsill, L. R. Shea, and B. Braynin, J. Autom. Chem. 17, 99 (1995).
39.
39.S. Haeberle, R. Zengerle, and J. Ducree, Microfluid. Nanofluid. 3, 65 (2007).
http://dx.doi.org/10.1007/s10404-006-0106-7
40.
40.G. J. Wang, W. H. Hsu, Y. Z. Chang, and H. H. Yang, Biomed. Microdevices 6, 47 (2004).
http://dx.doi.org/10.1023/B:BMMD.0000013365.99619.36
41.
41.R. Peytavi, F. R. Raymond, D. Gagne, F. J. Picard, G. Jia, J. Zoval, M. Madou, K. Boissinot, M. Boissinot, L. Bissonnette, M. Ouellette, and M. G. Bergeron, Clin. Chem. 51, 1836 (2005).
http://dx.doi.org/10.1373/clinchem.2005.052845
42.
42.Y. K. Cho, J. G. Lee, J. M. Park, B. S. Lee, Y. Lee, and C. Ko, Lab Chip 7, 565 (2007).
http://dx.doi.org/10.1039/b616115d
43.
43.S. Haeberle, N. Schmitt, R. Zengerle, and J. Ducree, Sens. Actuators, A 135, 28 (2007).
http://dx.doi.org/10.1016/j.sna.2006.09.001
44.
44.J. Kim, H. Kido, R. H. Rangel, and M. J. Madou, Sens. Actuators B 128, 613 (2008).
http://dx.doi.org/10.1016/j.snb.2007.07.079
45.
45.J. Ducree, S. Haeberle, T. Brenner, T. Glatzel, and R. Zengerle, Microfluid. Nanofluid. 2, 97 (2006).
http://dx.doi.org/10.1007/s10404-005-0049-4
46.
46.M. A. Bynum and G. B. Gordon, Anal. Chem. 76, 7039 (2004).
http://dx.doi.org/10.1021/ac048840+
47.
47.M. Grumann, A. Geipel, L. Riegger, R. Zengerle, and J. Ducree, Lab Chip 5, 560 (2005).
http://dx.doi.org/10.1039/b418253g
48.
48.C. Y. Li, X. L. Dong, J. H. Qin, and B. C. Lin, Anal. Chim. Acta 640, 93 (2009).
http://dx.doi.org/10.1016/j.aca.2009.03.026
49.
49.J. Ducree, T. Brenner, S. Haeberle, T. Glatzel, and R. Zengerle, Microfluid. Nanofluid. 2, 78 (2006).
http://dx.doi.org/10.1007/s10404-005-0056-5
50.
50.E. A. Moschou, A. D. Nicholson, G. Y. Jia, J. V. Zoval, M. J. Madou, L. G. Bachas, and S. Daunert, Anal. Bioanal. Chem. 385, 596 (2006).
http://dx.doi.org/10.1007/s00216-006-0436-z
51.
51.S. Haeberle, T. Brenner, R. Zengerle, and J. Ducree, Lab Chip 6, 776 (2006).
http://dx.doi.org/10.1039/b604145k
52.
52.J. Kim, S. H. Jang, G. Y. Jia, J. V. Zoval, N. A. Da Silva, and M. J. Madou, Lab Chip 4, 516 (2004).
http://dx.doi.org/10.1039/b401106f
53.
53.H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, Colloids Surf., B 58, 44 (2007).
http://dx.doi.org/10.1016/j.colsurfb.2007.03.015
54.
54.N. Kim, C. M. Dempsey, J. V. Zoval, J. Y. Sze, and M. J. Madou, Sens. Actuators B 122, 511 (2007).
http://dx.doi.org/10.1016/j.snb.2006.06.026
55.
55.S. K. Lee, G. R. Yi, and S. M. Yang, Lab Chip 6, 1171 (2006).
http://dx.doi.org/10.1039/b606448e
56.
56.G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
57.
57.L. Peng, M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, Appl. Phys. Lett. 86, 183902 (2005).
http://dx.doi.org/10.1063/1.1915511
58.
58.X. Y. Peng, P. C. H. Li, H. Z. Yu, M. Parameswaran, and W. L. Chou, Sens. Actuators B 128, 64 (2007).
http://dx.doi.org/10.1016/j.snb.2007.05.038
59.
59.H. Chen, L. Wang, and P. C. H. Li, Lab Chip 8, 826 (2008).
http://dx.doi.org/10.1039/b719846a
60.
60.M. Gustafsson, D. Hirschberg, C. Palmberg, H. Jornvall, and T. Bergman, Anal. Chem. 76, 345 (2004).
http://dx.doi.org/10.1021/ac030194b
61.
61.M. Najam-ul-Haq, M. Rainer, C. W. Huck, P. Hausberger, H. Kraushaar, and G. K. Bonn, Anal. Chem. 80, 7467 (2008).
http://dx.doi.org/10.1021/ac801190e
62.
62.L. G. Puckett, E. Dikici, S. Lai, M. Madou, L. G. Bachas, and S. Daunert, Anal. Chem. 76, 7263 (2004).
http://dx.doi.org/10.1021/ac049758h
63.
63.S. Lai, S. N. Wang, J. Luo, L. J. Lee, S. T. Yang, and M. J. Madou, Anal. Chem. 76, 1832 (2004).
http://dx.doi.org/10.1021/ac0348322
64.
64.A. Rothert, S. K. Deo, L. Millner, L. G. Puckett, M. J. Madou, and S. Daunert, Anal. Biochem. 342, 11 (2005).
http://dx.doi.org/10.1016/j.ab.2004.10.048
65.
65.C. Eriksson, C. Agaton, R. Kange, M. Sundberg, P. Nilsson, B. Ek, M. Uhlen, M. Gustafsson, and S. Hober, J. Proteome Res. 5, 1568 (2006).
http://dx.doi.org/10.1021/pr050447c
66.
66.L. Riegger, M. Grumann, T. Nann, J. Riegler, O. Ehlert, W. Bessler, K. Mittenbuehler, G. Urban, L. Pastewka, T. Brenner, R. Zengerle, and J. Ducree, Sens. Actuators, A 126, 455 (2006).
http://dx.doi.org/10.1016/j.sna.2005.11.006
67.
67.J. Steigert, M. Grumann, T. Brenner, L. Riegger, J. Harter, R. Zengerle, and J. Ducree, Lab Chip 6, 1040 (2006).
http://dx.doi.org/10.1039/b607051p
68.
68.A. S. Watts, A. A. Urbas, E. Moschou, V. G. Gavalas, J. V. Zoval, M. Madou, and L. G. Bachas, Anal. Chem. 79, 8046 (2007).
http://dx.doi.org/10.1021/ac0709100
69.
69.O. Carion, V. Souplet, C. Olivier, C. Maillet, N. Meclard, O. El-Mahdi, J. O. Durand, and O. Melnyk, ChemBioChem 8, 315 (2007).
http://dx.doi.org/10.1002/cbic.200600504
70.
70.J. Steigert, M. Grumann, M. Dube, W. Streule, L. Riegger, T. Brenner, P. Koltay, K. Mittmann, R. Zengerle, and J. Ducree, Sens. Actuators, A 130, 228 (2006).
http://dx.doi.org/10.1016/j.sna.2006.01.031
71.
71.N. Honda, U. Lindberg, P. Andersson, S. Hoffman, and H. Takei, Clin. Chem. 51, 1955 (2005).
http://dx.doi.org/10.1373/clinchem.2005.053348
72.
72.G. Y. Jia, K. S. Ma, J. Kim, J. V. Zoval, R. Peytavi, M. G. Bergeron, and M. J. Madou, Sens. Actuators B Chem. 114, 173 (2006).
http://dx.doi.org/10.1016/j.snb.2005.04.043
73.
73.H. Kido, A. Maquieira, and B. D. Hammock, Anal. Chim. Acta 411, 1 (2000).
http://dx.doi.org/10.1016/S0003-2670(00)00776-5
74.
74.H. Z. Yu, Chem. Commun. (Cambridge) 2004, 2633.
75.
75.K. S. Ko, P. Najmabadi, J. J. La Clair, and M. D. Burkart, ChemBioChem 9, 201 (2008).
http://dx.doi.org/10.1002/cbic.200700468
76.
76.M. J. Banuls, V. Gonzaalez-Pedro, R. Puchades, and A. Maquieira, Bioconjugate Chem. 18, 1408 (2007).
http://dx.doi.org/10.1021/bc700194n
77.
77.Y. C. Li, Z. Wang, L. M. L. Ou, and H. Z. Yu, Anal. Chem. 79, 426 (2007).
http://dx.doi.org/10.1021/ac061134j
78.
78.J. Tamarit-Lopez, S. Morais, R. Puchades, and A. Maquieira, Anal. Chim. Acta 609, 120 (2008).
http://dx.doi.org/10.1016/j.aca.2007.12.028
79.
79.M. J. Banuls, F. Garcia-Pinon, R. Puchades, and A. Maquieira, Bioconjugate Chem. 19, 665 (2008).
http://dx.doi.org/10.1021/bc7003457
80.
80.S. Morais, J. Tamarit-Lopez, J. Carrascosa, R. Puchades, and A. Maquieira, Anal. Bioanal. Chem. 391, 2837 (2008).
http://dx.doi.org/10.1007/s00216-008-2224-4
81.
81.Y. C. Li, L. M. L. Ou, and H. Z. Yu, Anal. Chem. 80, 8216 (2008).
http://dx.doi.org/10.1021/ac8012434
82.
82.S. A. Lange, G. Roth, S. Wittermann, T. Lacoste, A. Vetter, J. Grassle, S. Kopta, M. Kolleck, B. Breitinger, M. Wick, and J. K. H. Horber, Angew. Chem., Int. Ed. 45, 270 (2006).
http://dx.doi.org/10.1002/anie.200501243
83.
83.F. S. Ligler and J. S. Erickson, Nature (London) 440, 159 (2006).
http://dx.doi.org/10.1038/440159a
84.
84.S. Morais, J. Carrascosa, D. Mira, R. Puchades, and A. Maquieira, Anal. Chem. 79, 7628 (2007).
http://dx.doi.org/10.1021/ac070328b
85.
85.J. S. Erickson and F. S. Ligler, Nature (London) 456, 178 (2008).
http://dx.doi.org/10.1038/456178a
86.
86.R. A. Potyrailo, W. G. Morris, A. M. Leach, L. Hassib, K. Krishnan, C. Surman, R. Wroczynski, S. Boyette, C. Xiao, P. Shrikhande, A. Agree, and T. Cecconie, Appl. Opt. 46, 7007 (2007).
http://dx.doi.org/10.1364/AO.46.007007
87.
87.R. A. Potyrailo, W. G. Morris, A. M. Leach, T. M. Sivavec, M. B. Wisnudel, and S. Boyette, Anal. Chem. 78, 5893 (2006).
http://dx.doi.org/10.1021/ac060684e
88.
88.R. Ekins and F. W. Chu, Clin. Chem. 37, 1955 (1991).
89.
89.S. Morais, R. Marco-Moles, R. Puchades, and A. Maquieira, Chem. Commun. (Cambridge) 22, 2368 (2006).
http://dx.doi.org/10.1039/b600049e
90.
90.J. Kim, G. L. Liu, and L. P. Lee, Opt. Express 13, 4780 (2005).
http://dx.doi.org/10.1364/OPEX.13.004780
91.
91.D. Choi, T. Kang, H. Cho, Y. Choi, and L. P. Lee, Lab Chip 9, 239 (2009).
http://dx.doi.org/10.1039/b812067f
92.
92.X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
http://dx.doi.org/10.1016/j.aca.2008.05.022
93.
94.
94.M. Bally, M. Halter, J. Voros, and H. M. Grandin, Surf. Interface Anal. 38, 1442 (2006).
http://dx.doi.org/10.1002/sia.2375
95.
95.G. Gauglitz, Anal. Bioanal. Chem. 381, 141 (2005).
http://dx.doi.org/10.1007/s00216-004-2895-4
96.
96.R. G. Heideman, R. P. H. Kooyman, and J. Greve, Sens. Actuators B 10, 209 (1993).
http://dx.doi.org/10.1016/0925-4005(93)87008-D
97.
97.A. Brandenburg and R. Henninger, Appl. Opt. 33, 5941 (1994).
http://dx.doi.org/10.1364/AO.33.005941
98.
98.B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, J. Opt. A, Pure Appl. Opt. 8, S561 (2006).
http://dx.doi.org/10.1088/1464-4258/8/7/S41
99.
99.G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D: Appl. Phys. 37, 74 (2004).
http://dx.doi.org/10.1088/0022-3727/37/1/012
100.
100.R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, Clin. Chem. 47, 1894 (2001).
101.
101.B. Cunningham, P. Li, and J. Pepper, Sens. Actuators B 81, 316 (2002).
http://dx.doi.org/10.1016/S0925-4005(01)00976-5
102.
102.G. Gauglitz, Rev. Sci. Instrum. 76, 062224 (2005).
http://dx.doi.org/10.1063/1.1906164
103.
103.M. Zhao, X. F. Wang, G. M. Lawrence, P. Espinoza, and D. D. Nolte, IEEE J. Sel. Top. Quantum Electron. 13, 1680 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.911002
104.
104.M. Zhao, X. Wang, and D. D. Nolte, Opt. Express 16, 7102 (2008).
http://dx.doi.org/10.1364/OE.16.007102
105.
105.E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, Proc. Natl. Acad. Sci. U.S.A. 105, 7988 (2008).
http://dx.doi.org/10.1073/pnas.0711421105
106.
106.R. Ince and R. Narayanaswamy, Anal. Chim. Acta 569, 1 (2006).
http://dx.doi.org/10.1016/j.aca.2006.03.058
107.
107.C. Hanel and G. Gauglitz, Anal. Bioanal. Chem. 372, 91 (2002).
http://dx.doi.org/10.1007/s00216-001-1197-3
108.
108.H. C. van de Hulst, Light Scattering by Small Particles (Dover, Mineola, NY, 1981).
109.
109.E. Hecht, Optics, 4th ed. (Addison-Wesley, San Franciso, CA, 2002).
110.
110.J. D. Jackson, Classical Electrodynamics (Wiley, NY, 1998).
111.
111.O. S. Heavens, Optical Properties of Thin Solid Films (Dover, Mineola, NY, 1991).
112.
112.G. Jin, P. Tengvall, I. Lundstrom, and H. Arwin, Anal. Biochem. 232, 69 (1995).
http://dx.doi.org/10.1006/abio.1995.9959
113.
113.G. Jin, R. Jansson, and H. Arwin, Rev. Sci. Instrum. 67, 2930 (1996).
http://dx.doi.org/10.1063/1.1147074
114.
114.H. Arwin, Thin Solid Films 377, 48 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01385-7
115.
115.M. Poksinski and H. Arwin, Opt. Lett. 32, 1308 (2007).
http://dx.doi.org/10.1364/OL.32.001308
116.
116.M. Poksinski and H. Arwin, Thin Solid Films 455, 716 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.01.037
117.
117.G. L. Wang, H. Arwin, and R. Jansson, Appl. Opt. 43, 2000 (2004).
http://dx.doi.org/10.1364/AO.43.002000
118.
118.J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).
http://dx.doi.org/10.1016/S0142-9612(02)00103-5
119.
119.J. Voros, Biophys. J. 87, 553 (2004).
http://dx.doi.org/10.1529/biophysj.103.030072
120.
120.T. E. Balmer and M. Heuberger, Rev. Sci. Instrum. 78, 093105 (2007).
http://dx.doi.org/10.1063/1.2777369
121.
121.M. Heuberger and T. E. Balmer, J. Phys. D: Appl. Phys. 40, 7245 (2007).
http://dx.doi.org/10.1088/0022-3727/40/23/S07
122.
122.X. F. Wang, Y. P. Chen, and D. D. Nolte, Opt. Express 16, 22105 (2008).
http://dx.doi.org/10.1364/OE.16.022105
123.
123.X. Wang, M. Zhao, and D. D. Nolte, Appl. Opt. 47, 2779 (2008).
http://dx.doi.org/10.1364/AO.47.002779
124.
124.M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, Biosens. Bioelectron. 19, 1371 (2004).
http://dx.doi.org/10.1016/j.bios.2003.12.033
125.
125.M. Zhao, W. Cho, F. Regnier, and D. Nolte, Appl. Opt. 46, 6196 (2007).
http://dx.doi.org/10.1364/AO.46.006196
126.
126.M. Zhao, X. F. Wang, and D. Nolte, in Proceedings of the Society of Photo-Optical Instrumentation, edited by A. N. Cartwright and D. V. Nicolau (SPIE, Bellingham, WA, 2007), Vol. 6447, p. B4470.
127.
127.L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, Appl. Opt. 46, 5384 (2007).
http://dx.doi.org/10.1364/AO.46.005384
128.
128.P. Hariharan, Optical Interferometry (Elsevier, Amsterdam, 2003).
129.
129.M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, J. Clin. Chem. 52, 2135 (2006).
http://dx.doi.org/10.1373/clinchem.2006.072793
130.
130.M. R. Atkinson, A. E. Dixon, and S. Damaskinos, Appl. Opt. 31, 6765 (1992).
http://dx.doi.org/10.1364/AO.31.006765
131.
131.C. Chien, L. Chung-Wei, and P. Li-Cheng, Appl. Opt. 40, 95 (2001).
http://dx.doi.org/10.1364/AO.40.000095
132.
132.C. Chien, S. Jenn-Chyang, H. Yeu-Chuen, and Y. Chen-Kee, Appl. Opt. 37, 4137 (1998).
http://dx.doi.org/10.1364/AO.37.004137
133.
133.C. W. See, R. K. Appel, and M. G. Somekh, Appl. Phys. Lett. 53, 10 (1988).
http://dx.doi.org/10.1063/1.100118
134.
134.C. W. See, M. V. Iravani, and H. K. Wickramasinghe, Appl. Opt. 24, 2373 (1985).
http://dx.doi.org/10.1364/AO.24.002373
135.
135.C. W. See and M. Vaez-Iravani, Appl. Opt. 27, 2786 (1988).
http://dx.doi.org/10.1364/AO.27.002786
136.
136.M. G. Somekh, M. S. Valera, and R. K. Appel, Appl. Opt. 34, 4857 (1995).
http://dx.doi.org/10.1364/AO.34.004857
137.
137.S. Komatsu, H. Suhara, and H. Ohzu, Appl. Opt. 29, 4244 (1990).
http://dx.doi.org/10.1364/AO.29.004244
138.
138.M. B. Suddendorf, M. G. Somekh, and C. W. See, Appl. Opt. 36, 6202 (1997).
http://dx.doi.org/10.1364/AO.36.006202
139.
139.M. Zhao, L. Peng, and D. D. Nolte, Phase-Contrast Biological Compact Disc for Molecular Recognition (SPIE, Bellingham, WA, 2005).
140.
140.M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, WA, 2006), Vol. 6095, pp. L950.
141.
141.R. M. Ostroff, D. Hopkins, A. B. Haeberli, W. Baouchi, and B. Polisky, Clin. Chem. 45, 1659 (1999).
142.
142.R. Jenison, S. Yang, A. Haeberli, and B. Polisky, Nat. Biotechnol. 19, 62 (2001).
http://dx.doi.org/10.1038/83530
143.
143.X. F. Wang, M. Zhao, and D. D. Nolte, Anal. Bioanal. Chem. 393, 1151 (2009).
http://dx.doi.org/10.1007/s00216-008-2370-8
144.
144.X. F. Wang, M. Zhao, and D. D. Nolte, Appl. Phys. Lett. 93, 223904 (2008).
http://dx.doi.org/10.1063/1.3040303
145.
145.X. F. Wang,o M. Zhao, and D. D. Nolte, Biosens. Bioelectron. 24, 981 (2008).
http://dx.doi.org/10.1016/j.bios.2008.07.078
146.
146.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
147.
147.S. C. B. Gopinath, K. Awazu, J. Tominaga, and P. K. R. Kumar, ACS Nano 2, 1885 (2008).
http://dx.doi.org/10.1021/nn800285p
148.
148.S. C. S. Gopinath, K. Awazu, P. Fons, J. Tominaga, and P. K. R. Kumar, Anal. Chem. 81, 4963 (2009).
http://dx.doi.org/10.1021/ac802757z
149.
149.M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, in Microarrays and Combinatorial Technologies for Biomedical Applications: Design, Fabrication, and Analysis, edited by D. V. Nicolau and R. Raghavachari (SPIE, Bellingham, WA, 2003), Vol. 4966, pp. 5864.
150.
150.M. Varma, “BioCD: Self-referencing interferometer for bioesensing,” Ph.D. thesis, Purdue University, West Lafayette, IN, 2005, p. 114.
151.
151.D. D. Nolte, Photorefractive Effects and Materials (Kluwer, Dordrecht, 1995).
152.
152.A. Blouin and J. -P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
http://dx.doi.org/10.1063/1.112153
153.
153.P. Delaye, A. Blouin, D. Drolet, L. -A. Montmorillon, G. Roosen, and J. -P. Monchalin, J. Opt. Soc. Am. B 14, 1723 (1997).
http://dx.doi.org/10.1364/JOSAB.14.001723
154.
154.R. K. Ing and J. -P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
http://dx.doi.org/10.1063/1.105742
155.
155.T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys., Part 1 34, 3737 (1995).
http://dx.doi.org/10.1143/JJAP.34.3737
156.
156.T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, Opt. Lett. 29, 2509 (2004).
http://dx.doi.org/10.1364/OL.29.002509
157.
157.D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001).
http://dx.doi.org/10.1364/JOSAB.18.000195
158.
158.D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).
http://dx.doi.org/10.1063/1.370284
159.
159.D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, J. Opt. Soc. Am. B 7, 2217 (1990).
http://dx.doi.org/10.1364/JOSAB.7.002217
160.
160.I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, and R. A. Kruger, Appl. Phys. Lett. 73, 1041 (1998).
http://dx.doi.org/10.1063/1.122078
161.
161.K. Jeong, L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, Appl. Opt. 44, 1798 (2005).
http://dx.doi.org/10.1364/AO.44.001798
162.
162.K. Jeong, J. J. Turek, and D. D. Nolte, Opt. Express 15, 14057 (2007).
http://dx.doi.org/10.1364/OE.15.014057
163.
163.P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 83, 575 (2003).
http://dx.doi.org/10.1063/1.1594830
164.
164.P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, Opt. Lett. 29, 68 (2004).
http://dx.doi.org/10.1364/OL.29.000068
165.
165.Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
http://dx.doi.org/10.1109/2944.686739
166.
166.Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 75, 3255 (1999).
http://dx.doi.org/10.1063/1.125316
167.
167.R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
http://dx.doi.org/10.1063/1.1329866
168.
168.E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, J. Am. Chem. Soc. 120, 500 (1998).
http://dx.doi.org/10.1021/ja973071f
169.
169.D. D. Nolte and M. Zhao, Proceedings of the Smart Medical and Biomedical Sensor Technology IV, 2006, edited by B. M. Cullum and J. C. Carter (SPIE, Bellingham, WA, 2006), Vol. 6380, pp. U127U132.
170.
170.H. Ozen and S. Sozen, Eur. Urol. 5, 495 (2006).
http://dx.doi.org/10.1016/j.eursup.2006.02.017
171.
171.S. P. Balk, Y. -J. Ko, and G. J. Bubley, J. Clin. Oncol. 21, 383 (2003).
http://dx.doi.org/10.1200/JCO.2003.02.083
172.
172.M. C. Wang, L. D. Papsidero, M. Kuriyama, L. A. Valenzuela, G. P. Murphy, and T. M. Chu, Prostate 2, 89 (1981).
http://dx.doi.org/10.1002/pros.2990020109
173.
173.J. Lovgren, C. Valtonen-Andre, K. Marsal, K. Marsal, H.. Lilja, and A. Lkundwall, J. Androl 20, 348 (1999).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/10/10.1063/1.3236681
Loading
/content/aip/journal/rsi/80/10/10.1063/1.3236681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/80/10/10.1063/1.3236681
2009-10-27
2016-02-13

Abstract

Spinning biodisks have advantages that make them attractive for specialized biochip applications. The two main classes of spinning biodisks are microfluidic disks and bio-optical compact disks (BioCD). Microfluidic biodisks take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal and Coriolis forces to distribute fluids about the disks. BioCDs use spinning-disk interferometry, under the condition of common-path phase quadrature, to perform interferometric label-free detection of molecular recognition and binding. The optical detection of bound molecules on a disk is facilitated by rapid spinning that enables high-speed repetitive sampling to eliminate noise through common-mode rejection of intensity fluctuations and extensive signal averaging. Multiple quadrature classes have been developed, such as microdiffraction, in-line, phase contrast, and holographic adaptive optics. Thin molecular films are detected through the surface dipole density with a surface height sensitivity for the detection of protein spots that is approximately 1 pm. This sensitivity easily resolves a submonolayer of solid-support immobilized antibodies and their antigen targets. Fluorescence and light scattering provide additional optical detection techniques on spinning disks. Immunoassays have been applied to haptoglobin using protein A/G immobilization of antibodies and to prostate specific antigen. Small protein spots enable scalability to many spots per disk for high-throughput and highly multiplexed immonoassays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/80/10/1.3236681.html;jsessionid=71lp2ogp0qcj0.x-aip-live-06?itemId=/content/aip/journal/rsi/80/10/10.1063/1.3236681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd