1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/80/11/10.1063/1.3256113
1.
1.P. Fehsenfeld, A. Kleinrahm, and H. Schweickert, J. Radioanal. Nucl. Chem. 160, 141 (1992).
http://dx.doi.org/10.1007/BF02041664
2.
2.H. Yokota, J. Radioanal. Nucl. Chem. 249, 503 (2001).
http://dx.doi.org/10.1023/A:1013217425209
3.
3.G. Muehllehner and J. S. Karp, Phys. Med. Biol. 51, R117 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/R08
4.
4.C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed. (Wiley, New York, 1978).
5.
5.H. Takahashi, S. Okihara, M. Fujimoto, S. Ohsuka, K. Matsukado, S. Okazaki, T. Ito, S. Aoshima, and Y. Tsuchiya, Jpn. J. Appl. Phys., Part 2 44, L425 (2005).
http://dx.doi.org/10.1143/JJAP.44.L425
6.
6.K. W. D. Ledingham, P. McKenna, and R. P. Singhal, Science 300, 1107 (2003).
http://dx.doi.org/10.1126/science.1080552
7.
7.K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, and V. Y. Bychenkov, Appl. Phys. Lett. 78, 595 (2001).
http://dx.doi.org/10.1063/1.1343845
8.
8.M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke, and P. A. Norreys, Appl. Phys. Lett. 78, 19 (2001).
http://dx.doi.org/10.1063/1.1335849
9.
9.S. Okihara, M. Fujimoto, H. Takahashi, K. Matsukado, S. Ohsuka, S. Aoshima, S. Okazaki, T. Ito, and Y. Tsuchiya, Appl. Phys. Lett. 89, 121502 (2006).
http://dx.doi.org/10.1063/1.2356084
10.
10.A. Maksimchuk, K. Flippo, H. Krause, G. Mourou, K. Nemoto, D. Shultz, D. Umstadter, R. Vane, V. Yu. Bychenkov, G. I. Dudnikova, V. F. Kovalev, K. Mima, V. N. Novikov, Y. Sentoku, and S. V. Tolokonnikov, Plasma Phys. Rep. 30, 473 (2004)
http://dx.doi.org/10.1134/1.1768582
10.A. Maksimchuk, K. Flippo, H. Krause, G. Mourou, K. Nemoto, D. Shultz, D. Umstadter, R. Vane, V. Yu. Bychenkov, G. I. Dudnikova, V. F. Kovalev, K. Mima, V. N. Novikov, Y. Sentoku, and S. V. Tolokonnikov, [from Fiz. Plazmy 30, 514 (2004)].
11.
11.S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
http://dx.doi.org/10.1063/1.1333697
12.
12.R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
13.
13.A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Yu. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4108
14.
14.E. L. Clark, K. Krushelnick, J. R. Davies, M. Zepf, M. Tatarakis, F. N. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts, and A. E. Dangor, Phys. Rev. Lett. 84, 670 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.670
15.
15.V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Opt. Express 16, 2109 (2008).
http://dx.doi.org/10.1364/OE.16.002109
16.
16.F. Ple, M. Pittman, G. Jamelot, and J. -P. Chambaret, Opt. Lett. 32, 238 (2007).
http://dx.doi.org/10.1364/OL.32.000238
17.
17.Y. Akahane, J. Ma, Y. Fukuda, M. Aoyoma, H. Kiriyama, J. V. Sheldakova, A. V. Kudryashov, and K. Yamakawa, Rev. Sci. Instrum. 77, 023102 (2006).
http://dx.doi.org/10.1063/1.2166669
18.
18.M. Fujimoto, K. Matsukado, H. Takahashi, Y. Kawada, S. Ohsuka, and S. Aoshima, Appl. Phys. Lett. 93, 251101 (2008).
http://dx.doi.org/10.1063/1.3049138
19.
19.E. J. Takahashi, T. Kanai, Y. Nabekawa, and K. Midorikawa, Appl. Phys. Lett. 93, 041111 (2008).
http://dx.doi.org/10.1063/1.2960352
20.
20.W. P. Leemans, B. Nagler, A. J. Gonsaleves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
21.
21.E. Miura, K. Koyama, S. Kato, N. Saito, M. Adachi, Y. Kawada, T. Nakamura, and M. Tanimoto, Appl. Phys. Lett. 86, 251501 (2005).
http://dx.doi.org/10.1063/1.1949289
22.
22.S. Ter-Avetisyan, M. Schnurer, D. Hilscher, U. Jahnke, S. Busch, P. V. Nickles, and W. Sandner, Phys. Plasmas 12, 012702 (2005).
http://dx.doi.org/10.1063/1.1815001
23.
23.H. Takahashi, S. Okihara, M. Fujimoto, S. Okazaki, T. Ito, S. Ohsuka, S. Aoshima, and Y. Tsuchiya, Jpn. J. Appl. Phys., Part 2 44, L419 (2005).
http://dx.doi.org/10.1143/JJAP.44.L419
24.
24.M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J. C. Gauthier, M. Geissel, P. Audebert, T. Cowan, and M. Roth, Phys. Rev. Lett. 89, 085002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.085002
25.
25.T. Nayuki, Y. Oishi, T. Fujii, K. Nemoto, T. Kayoiji, Y. Okano, Y. Hironaka, K. G. Nakamura, K. Kondo, and K. Ueda, Rev. Sci. Instrum. 74, 3293 (2003).
http://dx.doi.org/10.1063/1.1578156
26.
26.K. Matsukado, M. Fujimoto, H. Takahashi, Y. Kawada, S. Ohsuka, and S. Aoshima, “Novel technique for measuring MeV-order ions emitted from a laser-induced relativistic plasma II,” in Abstracts of International Symposium on Ultrafast Intense Laser Science, Kyoto, Japan, 2008, p. 97.
27.
27.H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).
http://dx.doi.org/10.1109/TAC.1974.1100705
28.
28.T. Nayuki, T. Fujii, Y. Oishi, K. Takano, X. Wang, A. A. Andreev, K. Nemoto, and K. Ueda, Rev. Sci. Instrum. 76, 073305 (2005).
http://dx.doi.org/10.1063/1.1942527
29.
29.M. Fujimoto, H. Itoh, H. Takahashi, S. Aoshima, and Y. Tsuchiya, Opt. Commun. 280, 404 (2007).
http://dx.doi.org/10.1016/j.optcom.2007.08.010
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/11/10.1063/1.3256113
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Experimental setup. (a) Overall view of experimental area. The laser system is composed of a femtosecond oscillator, a pulse stretcher, a regenerative amplifier, and three stages of multipass amplifiers producing intense optical pulses 800 nm in central wavelength with a 10 Hz repetition. When a mechanical shutter is open, the amplified pulses are incident on a vacuum pulse compressor to be compressed to in duration. After being redirected in vacuum, the compressed pulses arrive at a target chamber. The pulses have an energy of , i.e., a peak power of , on the laser-irradiation target. The mechanical shutter and instruments in the vacuum chambers are controlled by a personal computer in the control room. (b) Experimental arrangement in the target chamber. An off-axis parabolic mirror focuses the pulses on the laser-irradiation target in the normal direction to make the maximum intensity exceed . For effective production of MeV-order deuterons, the laser-irradiation target is constructed by a microporous polytetrafluoroethylene film loaded with deuterated polystyrene . The shape of the target is a roll of tape, which is thick, 20 mm wide, and long. The tape driver feeds the tape at a typical speed of 48 mm/s to provide a fresh surface of tape for each laser shot. The accelerated deuterons are incident on an activation target, which is composed of two solid plates of some centimeters square, to cause nuclear reactions.

Image of FIG. 2.

Click to view

FIG. 2.

Coincidence measurement of graphite plates activated by 2000 pulses of 76 TW peak power and 32 fs duration. The counting rate of decay is plotted as a function of time. The actual activity is given by the vertical value divided by detection efficiency of 0.218. The dots indicate experimental data. The solid line shows the result of the fit of a curve representing a decay of , where a likelihood function based on a Poisson process is used for the fit.

Image of FIG. 3.

Click to view

FIG. 3.

Coincidence measurement of boron-nitride plates activated by 1500 pulses of 94 TW peak power and 27 fs duration. The counting rate of decay is plotted as a function of time. The actual activity is given by the vertical value divided by detection efficiency of 0.218. The dots indicate experimental data. The solid line shows the maximum-likelihood model among the models, each of which assumes the decay of a particular combination of possible nuclear products. The generation of and is confirmed.

Image of FIG. 4.

Click to view

FIG. 4.

Coincidence measurement of melamine plates activated by 2000 pulses of 72 TW peak power and 33 fs duration. The counting rate of decay is plotted as a function of time. The actual activity is given by the vertical value divided by detection efficiency of 0.218. The dots indicate experimental data. The solid line shows the maximum-likelihood model among the models, each of which assumes the decay of a particular combination of possible nuclear products. The generation of and is confirmed.

Tables

Generic image for table

Click to view

Table I.

Results of activation experiments using three kinds of materials as activation targets. Possible reactions and the half-lives of the nuclear products are also shown. The activities are given by the values at the termination of laser irradiation. The numbers of nuclear reactions per laser shot are estimated under the assumption of a constant reaction rate per shot.

Loading

Article metrics loading...

/content/aip/journal/rsi/80/11/10.1063/1.3256113
2009-11-09
2014-04-17

Abstract

Positron emitters , , and , which can be used in positron emission tomography, were produced using deuterons accelerated by irradiation of laser pulses in peak power and in duration with a repetition of 10 Hz during a period of as long as 200 s. Every laser pulse irradiates the fresh surface of a long strip of a solid-state thin film. Deuterons contained in the film are accelerated in the relativistic plasma induced by the pulse. The deuterons are repetitively incident on solid plates, which are placed near the film, to produce positron emitters by nuclear reactions. The radioactivities of the activated plates are measured after the termination of laser irradiation. In activation of graphite, boron-nitride, and melamine plates, the products had total activities of 64, 46, and 153 Bq, respectively. Contamination in the setup was negligible even after several thousands of laser shots. Our apparatus is expected to greatly contribute to the construction of a compact PET diagnostic system in the future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/80/11/1.3256113.html;jsessionid=9e38lkhk3lesc.x-aip-live-03?itemId=/content/aip/journal/rsi/80/11/10.1063/1.3256113&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/11/10.1063/1.3256113
10.1063/1.3256113
SEARCH_EXPAND_ITEM