1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration
Rent:
Rent this article for
USD
10.1063/1.3093810
/content/aip/journal/rsi/80/3/10.1063/1.3093810
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/3/10.1063/1.3093810
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Schematic layout of main components of the JAEA AVF cyclotron, viewed by excluding the upper side of the main magnet, with a picture of the FT resonator. The FT resonator is capacitively coupled to the fundamental resonator.

Image of FIG. 2.
FIG. 2.

Schematic diagram of the resonators. The span angle of the dee electrode and its maximum voltage are 86° and 60 kV, respectively. A fundamental resonance at frequencies ranging from 11 to 22 MHz is obtained by adjusting the position of the movable short L1 within a range of 1350 mm.

Image of FIG. 3.
FIG. 3.

Dependence of the fundamental and resonance frequencies on the position of the movable short L1. Open circles and closed triangles represent measured and calculated frequencies, respectively. The fundamental mode at is used as the acceleration voltage.

Image of FIG. 4.
FIG. 4.

Comparison between the measured values and those calculated by the MAFIA code at the fundamental frequencies. The calculated values are multiplied by a factor of 0.7.

Image of FIG. 5.
FIG. 5.

Dependence of the fifth-harmonic resonance frequency on the position of L5 for various dimensions of the FT resonator. The dimensions a and b represent inner- and outer-tube diameters, respectively. The gap of C5 was fixed at 25 mm during the simulation.

Image of FIG. 6.
FIG. 6.

Dependence of position setting of the C5 gap (circles) and the L5 position (squares) on the resonance frequency for impedance matching. Open and closed symbols represent calculated and measured positions, respectively. In the calculation, optimum L5 positions were searched for fixed C5 gap of 6, 25, and 50 mm. The required resonance range was completely covered by the actual FT resonator.

Image of FIG. 7.
FIG. 7.

Comparison between the measured value (closed circles) and the value calculated by the MAFIA code for the fifth-harmonic frequency. The calculated values (open circles) are multiplied by a factor of 0.5.

Image of FIG. 8.
FIG. 8.

Variations in the measured values and the transmission level S21 for the different settings of the C5 position tuned to 75 MHz. The position of L5 was shifted 118 mm through the course of the measurement.

Image of FIG. 9.
FIG. 9.

Fifth-harmonic voltage ratios at a radius of 915 mm to the tip of the dee electrode . The extraction radius of the cyclotron is 923 mm. The voltage ratio decreases for the higher frequency because of the short wavelength of the standing wave.

Image of FIG. 10.
FIG. 10.

Distribution of the number of revolutions per 100 mm for acceleration harmonics of 1, 2, and 3. Variation in the measured fifth-harmonic voltages along the cyclotron radius is also shown.

Image of FIG. 11.
FIG. 11.

Picture of newly developed deflector probe with a tungsten sheet and schematic explanation of the radial turn pattern measurement.

Image of FIG. 12.
FIG. 12.

Radial current distribution at 220 MeV measured around the entrance of the deflector electrode. Clear turn separation was observed for FT acceleration.

Image of FIG. 13.
FIG. 13.

Distribution of the 260 MeV beam current measured by an integral current probe around the entrance of the magnetic channel. The extraction efficiency at the deflector electrode was estimated to be 97% for FT acceleration and 79% for the fundamental acceleration.

Image of FIG. 14.
FIG. 14.

Distribution of the beam current at 45 MeV measured by the differential current probe. The extraction efficiency was improved from 56% to 86% by FT acceleration.

Image of FIG. 15.
FIG. 15.

Pulse train of the beam bunch for 260 MeV at the beam transport line when a single beam bunch was injected to the cyclotron: (a) single-turn extraction with FT acceleration and (b) typical pulse train from multiturn extraction. The period of the natural beam bunches corresponds to 15 channels in the axis of time.

Image of FIG. 16.
FIG. 16.

Beam current distributions of the 260 MeV measured at the focusing point of the analyzing magnet for estimation of the energy spread. The beam width was limited to 0.1 mm by a microslit system placed at the upstream position of the magnet, and the beam expansion of 0.1 mm at the downstream corresponds to 0.01% of the energy spread.

Image of FIG. 17.
FIG. 17.

Beam current distributions for the energy spread of 0.05, 0.1, 0.3, and 0.5%, simulated by summation of Gaussian profiles with a fixed beam bunch interval and width of 3 and 1.2 mm, respectively.

Loading

Article metrics loading...

/content/aip/journal/rsi/80/3/10.1063/1.3093810
2009-03-13
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/3/10.1063/1.3093810
10.1063/1.3093810
SEARCH_EXPAND_ITEM