1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation
Rent:
Rent this article for
USD
10.1063/1.3147062
/content/aip/journal/rsi/80/6/10.1063/1.3147062
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/6/10.1063/1.3147062

Figures

Image of FIG. 1.
FIG. 1.

Reaction forces on grasping mode: (a) angular mode and (b) parallel mode.

Image of FIG. 2.
FIG. 2.

Basic geometrical model of the microgripper (first model).

Image of FIG. 3.
FIG. 3.

Basic geometrical model of the microgripper (second model).

Image of FIG. 4.
FIG. 4.

Equivalent representation of flexible structure comprising of rigid hinge and torsional spring.

Image of FIG. 5.
FIG. 5.

Kinematic representation of the grasping mechanism with basic parametric values (first model).

Image of FIG. 6.
FIG. 6.

Kinematic representation of the gripper mechanism with basic parametric values (second model).

Image of FIG. 7.
FIG. 7.

PRBM for bias spring.

Image of FIG. 8.
FIG. 8.

Static body analysis of the gripper mechanism (first model).

Image of FIG. 9.
FIG. 9.

Comparison of the geometrical representation of the parallel structure: (a) hybrid model and (b) parallel strip structure.

Image of FIG. 10.
FIG. 10.

2D FEA analysis (first model).

Image of FIG. 11.
FIG. 11.

2D FEA analysis (second model).

Image of FIG. 12.
FIG. 12.

3D FEA analysis (first model).

Image of FIG. 13.
FIG. 13.

3D FEA analysis (second model).

Image of FIG. 14.
FIG. 14.

General procedure for compliant mechanism prototyping.

Image of FIG. 15.
FIG. 15.

Mechanism prototype (first model).

Image of FIG. 16.
FIG. 16.

Mechanism prototype (second model).

Image of FIG. 17.
FIG. 17.

General specifications governing the construction of microgripper models.

Image of FIG. 18.
FIG. 18.

Individual components (a) and final assembly (b) of the microgripper system (first model).

Image of FIG. 19.
FIG. 19.

Individual components (a) and full assembly (b) of the microgripper system (second model).

Image of FIG. 20.
FIG. 20.

Experimental setup.

Image of FIG. 21.
FIG. 21.

Variable grasping clearance for the gripper jaws (first model).

Image of FIG. 22.
FIG. 22.

Variable grasping clearance for the gripper jaws (second model).

Image of FIG. 23.
FIG. 23.

Demonstration of the gripper operating in closing mode: (a) first model and (b) second model.

Image of FIG. 24.
FIG. 24.

Output displacement vs the output force for the gripper mechanism.

Image of FIG. 25.
FIG. 25.

Output displacement vs the input force for gripper mechanism.

Image of FIG. 26.
FIG. 26.

Input displacement vs the applied voltage.

Image of FIG. 27.
FIG. 27.

Output displacement vs the applied voltage.

Image of FIG. 28.
FIG. 28.

Output displacement vs the output force for the parallel structure.

Image of FIG. 29.
FIG. 29.

Output displacement vs the output force for the gripper mechanism.

Image of FIG. 30.
FIG. 30.

Output displacement vs the input force for the gripper mechanism.

Image of FIG. 31.
FIG. 31.

Input displacement vs the applied voltage.

Image of FIG. 32.
FIG. 32.

Output displacement vs the applied voltage.

Tables

Generic image for table
Table I.

Variable operating range of the displacement sensor with achievable precision.

Loading

Article metrics loading...

/content/aip/journal/rsi/80/6/10.1063/1.3147062
2009-06-15
2014-04-20
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation
http://aip.metastore.ingenta.com/content/aip/journal/rsi/80/6/10.1063/1.3147062
10.1063/1.3147062
SEARCH_EXPAND_ITEM