banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A method of particle transport study using supersonic molecular beam injection and microwave reflectometry on HL-2A tokamak
Rent this article for
Access full text Article
1.G. T. Hoang, C. Bourdelle, B. Pégourié, B. Schunke, J. F. Artaud, J. Bucalossi, F. Clairet, C. Fenzi-Bonizec, X. Garbet, C. Gil, R. Guirlet, F. Imbeaux, J. Lasalle, T. Loarer, C. Lowry, J. M. Travère, and E. Tsitrone, Phys. Rev. Lett. 90, 155002 (2003).
2.C. Angioni, A. G. Peeters, G. V. Pereverzev, F. Ryter, and G. Tardini, Phys. Rev. Lett. 90, 205003 (2003).
3.D. R. Baker, M. R. Wade, C. C. Petty, M. N. Rosenbluth, T. C. Luce, J. S. deGrassie, B. W. Rice, R. J. Groebner, C. M. Greenfield, E. J. Doyle, C. L. Rettig, T. L. Rhodes, and M. A. Mahdavi, Nucl. Fusion 40, 1003 (2000).
4.N. J. Lopes Cardozo, Plasma Phys. Controlled Fusion 37, 799 (1995).
5.X. L. Zou, G. Giruzzi, J. F. Artaud, F. Bouquey, A. Clémençon, C. Darbos, R. J. Dumont, C. Guivarch, M. Lennholm, R. Magne, and J. L. Ségui, Nucl. Fusion 43, 1411 (2003).
6.P. Mantica, G. Gorini, G. M. D. Hogeweij, N. J. Lopes Cardozo, and A. M. R. Schillham, Phys. Rev. Lett. 85, 4534 (2000).
7.ASDEX Upgrade Team, F. Ryter, F. Leuterer, G. Pereverzev, H. -U. Fahrbach, J. Stober, and W. Suttrop, Phys. Rev. Lett. 86, 2325 (2001).
8.FTU Team and ECRH Group, S. Cirant, G. Bracco, A. Bruschi, P. Buratti, F. De Luca, B. Esposito, F. Gandini, E. Giovannozzi, A. Granucci, A. Jacchia, E. Lazzaro, E. Minardi, S. Nowak, G. Ramponi, C. Sozzi, and O. Tudisco, Nucl. Fusion 43, 1384 (2003).
9.K. W. Gentle, B. Richards, and F. Waelbroeck, Plasma Phys. Controlled Fusion 29, 1077 (1987).
10.K. W. Gentle, O. Gehre, and K. Krieger, Nucl. Fusion 32, 217 (1992).
11.P. C. Efthimion, S. von Goeler, W. A. Houlberg, E. J. Synakowski, M. C. Zarnstorff, S. H. Batha, R. E. Bell, M. Bitter, C. E. Bush, F. M. Levinton, E. Mazzucato, D. McCune, D. Mueller, H. Park, A. T. Ramsey, A. L. Roquemore, and G. Taylor, Phys. Plasmas 5, 1832 (1998).
12.K. Nagashima, A. Sakasai, and T. Fukuda, Nucl. Fusion 33, 1677 (1993).
13.L. H. Yao, N. Y. Tang, Z. Y. Cui, D. Xu, Z. Deng, X. Ding, J. Luo, J. Dong, G. Guo, S. Yang, C. Cui, Z. Xiao, D. Liu, X. Chen, L. Yan, D. Yan, E. Wang, and X. Deng, Nucl. Fusion 38, 631 (1998).
14.HL-1M Team, L. H. Yao, Y. Zhou, J. Y. Cao, B. Feng, Z. Deng, J. Luo, J. Dong, L. Yan, W. Hong, K. Li, Z. Cui, Y. Liu, E. Wang, and J. Yan, Nucl. Fusion 41, 817 (2001).
15.X. Weiwen, L. Zetian, D. Xuantong, S. Zhongbing, and V. Zhuravlev, Plasma Sci. Technol. 8, 133 (2006).
16.Y. Liu, X. T. Ding, Q. W. Yang, L. W. Yan, D. Q. Liu, W. M. Chen, X. M. Song, Z. Cao, J. H. Zhang, W. C. Mao, C. P. Zhao, X. D. Li, S. J. Wang, J. C. Yan, M. N. Bu, Y. H. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, W. Y. Hong, H. T. Hu, Y. Huang, Z. H. Kang, B. Li, W. Li, F. Z. Li, G. S. Li, K. H. J. Li, Q. Li, Y. G. Li, Z. J. Li, Y. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. Rao, X. Y. Song, M. Wang, M. X. Wang, Q. M. Wang, Z. G. Xiao, Y. F. Xie, L. H. Yao, L. Y. Yao, Y. J. Zheng, G. W. Zhong, Y. Zhou, and C. H. Pan, Nucl. Fusion 45, S239 (2005).
17.Yao Linghua, New Developments in Nuclear Fusion Research, edited by Y. Nakamura (Southwestern University of Physics, Chengdu, China, 2006), chap. 3, pp. 6187.
18.W. W. Xiao, X. T. Ding, Z. T. Liu, L. Yao, H. Sun, L. Yan, and Q. Yang, Plasma Sci. Technol. 10, 403 (2008).
19.W. W. Xiao, X. L. Zou, X. T. Ding, J. -Q. Dong, Z. -T. Liu, S. -D. Song, Y. -D. Gao, L. -H. Yao, B. -B. Feng, X. -M. Song, C. -Y. Chen, H. -J. Sun, Y. -G. Li, Q. -W. Yang, L. -W. Yan, Y. Liu, X. -R. Duan, C. -H. Pan, and Y. Liu, Chin. Phys. Lett. 26, 035201 (2009).
20.W. W. Xiao, X. T. Ding, X. L. Zou, Z. T. Liu, Y. D. Gao, J. Q. Dong, L. H. Yao, B. B. Feng, X. M. Song, S. D. Song, Y. Zhou, C. Y. Chen, L. W. Yan, Q. W. Yang, Yi Liu, X. R. Duan, C. H. Pan, and Y. Liu, Proceedings of the Ninth International Reflectometry Workshop – IRW9, Lisbon, May 2009 (unpublished).
21.L. H. Yao, B. B. Feng, C. Y. Chen, Z. Shi, B. Yuan, Y. Zhou, X. Duan, H. Sun, J. Lu, Y. Jiao, G. Ni, H. Lu, W. Xiao, W. Li, Y. Pan, W. Hong, H. Ran, X. Ding, and Y. Liu, Nucl. Fusion 47, 1399 (2007).
22.S. P. Eury, E. Harauchamps, X. L. Zou, and G. Giruzzi, Phys. Plasmas 12, 102511 (2005).


Image of FIG. 1.

Click to view

FIG. 1.

Schematic setup of the SMBI system and detection system.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic diagram of the broadband microwave reflectometry system on HL-2A.

Image of FIG. 3.

Click to view

FIG. 3.

Original signal of the microwave reflectometry for shot#3875 in HL-2A. (a) the phase signal I, (b) the phase signal , and (c) the scanning control voltage for the oscillators.

Image of FIG. 4.

Click to view

FIG. 4.

Arrangement of the system, the SMBI system, and the microwave reflectometry system on HL-2A.

Image of FIG. 5.

Click to view

FIG. 5.

Typical discharge with SMBI modulation (shot#3875). (a) Plasma current. (b) Gas puffing signal. (c) SMBI signal. (d) signal. (e) Mirnov coil signal.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Density perturbations at different minor radii during SMBI modulation in shot#3875. From the top down , 27, 28, 29, 30, 31, 32, 33, 34, 35, and 36 cm. (b) The response of electron temperature (by ECE) to the SMBI from the top down, , 13.7, 17.8, 24, and 30 cm.

Image of FIG. 7.

Click to view

FIG. 7.

Radial profile of the amplitude and the phase of the first harmonic of the FT of the modulated density for shot#3875.

Image of FIG. 8.

Click to view

FIG. 8.

intensity profile (shot#3825, close square) and the density modulation phase profile (shot#3875, close circular) in the similar discharge conditions. The particle source deposition is about for both discharges.

Image of FIG. 9.

Click to view

FIG. 9.

Contour image of the density increase ratio with time at different radii.

Image of FIG. 10.

Click to view

FIG. 10.

Amplitude and phase of the first harmonic of the FT of the modulated density for shot#7543. Comparison between experiments (open dots) and simulations with different particle source width (dash line), (dot line), and (solid line).

Image of FIG. 11.

Click to view

FIG. 11.

Radial profile of the particle diffusivity (a) and the particle convective velocity (b) for shot#7543.

Image of FIG. 12.

Click to view

FIG. 12.

Sensitivity in and of the amplitude and the phase for shot#7543. Comparison between experiments (open dots) and simulations: (a) for fixed with different diffusivity (dash line), (dot line), and given by Fig. 11(a) (best fit, solid line); (b) for fixed with (dash line), (dot line), and given by Fig. 11(b) (best fit, solid line).


Generic image for table

Click to view

Table I.

Main discharge parameters for shot#3825 and shot#3875.


Article metrics loading...



A method of the particle transport study using supersonic molecular beam injection (SMBI) and microwavereflectometry is reported in this paper. Experimental results confirm that pulsed SMBI is a good perturbation source with deeper penetration and better localization than the standard gas puffing. The local density modulation is induced using the pulsed SMBI and the perturbation density is measured by the microwavereflectometry. Using Fourier transform analysis for the local density perturbation, radial profiles of the amplitude and phase of the density modulation can be obtained. The experimental results in HL-2A show that the particle injected by SMBI is located at about . The position of the main particle source can be determined through three aspects: the minimum of the phase of the first harmonic of the Fourier transform of the modulated density measured by microwavereflectometry; the intensity profile and the local density increase ratio. The maximum of the amplitude of the first harmonic shifts often inward relative to the particle source location, which indicates clearly there is an inward particle pinch in this area. Good agreement has been found between the experimental results and the simulation using analytical transport model. The particle diffusivity and the particle convectionvelocity have been obtained by doing this simulation. The sensitivity in the transport coefficients of the amplitude and the phase of the density modulation has been discussed.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A method of particle transport study using supersonic molecular beam injection and microwave reflectometry on HL-2A tokamak