Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/81/10/10.1063/1.3499261
1.
1.G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, Opt. Lett. 21, 695 (1996).
http://dx.doi.org/10.1364/OL.21.000695
2.
2.F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
http://dx.doi.org/10.1038/nmeth.1221
3.
3.G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
http://dx.doi.org/10.1364/AO.12.000555
4.
4.S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, Faraday Discuss. 137, 65 (2008).
http://dx.doi.org/10.1039/b702920a
5.
5.S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, Opt. Express 17, 6230 (2009).
http://dx.doi.org/10.1364/OE.17.006230
6.
6.S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
http://dx.doi.org/10.1364/OL.28.000272
7.
7.F. Vollmer, S. Arnold, and D. Keng, Proc. Natl. Acad. Sci. U.S.A. 105, 20701 (2008).
http://dx.doi.org/10.1073/pnas.0808988106
8.
8.A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, J. Opt. Soc. Am. B 14, 790 (1997).
http://dx.doi.org/10.1364/JOSAB.14.000790
9.
9.J. C. Knight, G. Chung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
http://dx.doi.org/10.1364/OL.22.001129
10.
10.X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta 620, 8 (2008).
http://dx.doi.org/10.1016/j.aca.2008.05.022
11.
11.J. Zhu Sahin, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
http://dx.doi.org/10.1038/nphoton.2009.237
12.
12.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
http://dx.doi.org/10.1109/3.161322
13.
13., , where , , and are the refractive indices of the microsphere (1.45), aqueous medium (1.33), and polystyrene (1.59); for polystyrene nanoparticles .
14.
14.R. M. Corless, D. J. Jeffrey, and D. E. Knuth, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, HI (ACM, New York, 1997), pp. 197204.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/10/10.1063/1.3499261
Loading
/content/aip/journal/rsi/81/10/10.1063/1.3499261
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/81/10/10.1063/1.3499261
2010-10-27
2016-02-06

Abstract

We demonstrate a significant reduction in the limit of label-free detection of individual viral-sized nanoparticles in aqueous solution through the use of a frequency doubled telecom laser constructed from a distributed feedback-periodically poled lithium-niobate (DFB-PPLN) union. By driving a whispering gallery modebiosensor near a wavelength of 650 nm with this device we have detected real-time adsorption steps for particles 36 nm in radius with a signal to noise ratio of 8. The noise equivalent detection limit is (17 nm radius). This new lower limit is attributed to the ultralow resonance wavelength noise associated with the use of the DFB-PPLN device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/10/1.3499261.html;jsessionid=5oig9n3o6moj4.x-aip-live-02?itemId=/content/aip/journal/rsi/81/10/10.1063/1.3499261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd