1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/81/10/10.1063/1.3499261
1.
1.G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, Opt. Lett. 21, 695 (1996).
http://dx.doi.org/10.1364/OL.21.000695
2.
2.F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
http://dx.doi.org/10.1038/nmeth.1221
3.
3.G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
http://dx.doi.org/10.1364/AO.12.000555
4.
4.S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, Faraday Discuss. 137, 65 (2008).
http://dx.doi.org/10.1039/b702920a
5.
5.S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, Opt. Express 17, 6230 (2009).
http://dx.doi.org/10.1364/OE.17.006230
6.
6.S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
http://dx.doi.org/10.1364/OL.28.000272
7.
7.F. Vollmer, S. Arnold, and D. Keng, Proc. Natl. Acad. Sci. U.S.A. 105, 20701 (2008).
http://dx.doi.org/10.1073/pnas.0808988106
8.
8.A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, J. Opt. Soc. Am. B 14, 790 (1997).
http://dx.doi.org/10.1364/JOSAB.14.000790
9.
9.J. C. Knight, G. Chung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
http://dx.doi.org/10.1364/OL.22.001129
10.
10.X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta 620, 8 (2008).
http://dx.doi.org/10.1016/j.aca.2008.05.022
11.
11.J. Zhu Sahin, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
http://dx.doi.org/10.1038/nphoton.2009.237
12.
12.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
http://dx.doi.org/10.1109/3.161322
13.
13., , where , , and are the refractive indices of the microsphere (1.45), aqueous medium (1.33), and polystyrene (1.59); for polystyrene nanoparticles .
14.
14.R. M. Corless, D. J. Jeffrey, and D. E. Knuth, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, HI (ACM, New York, 1997), pp. 197204.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/10/10.1063/1.3499261
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) A resonance spectrum before (black line) and after adsorption (dashed red line); (b) a microsphere stimulated into a WGM by light evanescently coupled from a tapered fiber; (c) binding curve illustrating possible steps in with time.

Image of FIG. 2.

Click to view

FIG. 2.

Schematics of DFB-PPLN-WGM sensing system.

Image of FIG. 3.

Click to view

FIG. 3.

NEL-PPLN output power as a function of frequency doubled wavelength (lower) and DFB drive current (upper). The maximum output power at was 1.86 mW for a DFB input power of 17.8 mW. The inset shows the output as a function of PPLN operating temperature for a slightly smaller input power.

Image of FIG. 4.

Click to view

FIG. 4.

Shift of resonance wavelength of a microsphere resonator in time after polystyrene particles from a hydrosol with a concentration and mean radius were injected into the surrounding microfluidic cell. The inset shows the recorded resonance line . Points were taken 1/5 s apart while maintaining a bandwidth of . The power coupled into the sphere from a tapered fiber was .

Loading

Article metrics loading...

/content/aip/journal/rsi/81/10/10.1063/1.3499261
2010-10-27
2014-04-23

Abstract

We demonstrate a significant reduction in the limit of label-free detection of individual viral-sized nanoparticles in aqueous solution through the use of a frequency doubled telecom laser constructed from a distributed feedback-periodically poled lithium-niobate (DFB-PPLN) union. By driving a whispering gallery modebiosensor near a wavelength of 650 nm with this device we have detected real-time adsorption steps for particles 36 nm in radius with a signal to noise ratio of 8. The noise equivalent detection limit is (17 nm radius). This new lower limit is attributed to the ultralow resonance wavelength noise associated with the use of the DFB-PPLN device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/10/1.3499261.html;jsessionid=79s4kmo0dg3hh.x-aip-live-03?itemId=/content/aip/journal/rsi/81/10/10.1063/1.3499261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/10/10.1063/1.3499261
10.1063/1.3499261
SEARCH_EXPAND_ITEM